A novel statistical analysis and interpretation of flow cytometry data

被引:10
|
作者
Banks, H. T. [1 ,2 ]
Kapraun, D. F. [1 ,2 ]
Thompson, W. Clayton [1 ,2 ]
Peligero, Cristina [3 ]
Argilaguet, Jordi [3 ]
Meyerhans, Andreas [3 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Quantitat Sci Biomed, Raleigh, NC 27695 USA
[3] Univ Pompeu Fabra, Dept Expt & Hlth Sci, ICREA Infect Biol Lab, Barcelona 08003, Spain
基金
美国国家科学基金会;
关键词
immunology; flow cytometry; cyton models; mathematical and statistical models; label dynamics; parameter estimation; cellular models; MEASURING LYMPHOCYTE-PROLIFERATION; IN-VITRO; DIVISION; MODEL; RESPONSES; DYNAMICS; VIVO;
D O I
10.1080/17513758.2013.812753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.
引用
收藏
页码:96 / 132
页数:37
相关论文
共 50 条
  • [31] Automated analysis of bacterial flow cytometry data with FlowGateNIST
    Ross, David
    PLOS ONE, 2021, 16 (08):
  • [32] Flow cytometry data analysis: Recent tools and algorithms
    Montante, Sebastiano
    Brinkman, Ryan R.
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 : 56 - 62
  • [33] Statistical criteria to establish optimal antibody dilution in flow cytometry analysis
    Collino, Cesar J. G.
    Jaldin-Fincati, Javier R.
    Chiabrando, Gustavo A.
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2007, 72B (03) : 223 - 226
  • [34] STATISTICAL ANALYSIS AND FUNCTIONAL INTERPRETATION OF NEURONAL SPIKE DATA
    MOORE, GP
    PERKEL, DH
    SEGUNDO, JP
    ANNUAL REVIEW OF PHYSIOLOGY, 1966, 28 : 493 - +
  • [35] AN EXHAUSTIVE EMPIRICAL STATISTICAL ANALYSIS AND INTERPRETATION OF BITCOIN DATA
    Shanmugam, Velu Chinnasamy
    Kumarasamy, Pradeepaveerakumari
    Vijayalakshmi, C.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2024, 91 (04) : 421 - 437
  • [36] Interpretation of flow cytometry in primary immunodeficiency disorders
    Hernandez-Trujillo, Vivian P.
    Fleisher, Thomas A.
    ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2008, 100 (06) : 612 - 615
  • [37] A KNOWLEDGE-BASED SYSTEM FOR THE INTERPRETATION OF FLOW-CYTOMETRY DATA IN LEUKEMIAS AND LYMPHOMAS
    DIAMOND, LW
    NGUYEN, DT
    ANDREEFF, M
    MAIESE, RL
    BRAYLAN, RC
    CYTOMETRY, 1994, 17 (03): : 266 - 273
  • [38] Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis
    Carter, Kevin M.
    Raich, Raviv
    Finn, William G.
    Hero, Alfred O., III
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009, 3 (01) : 148 - 158
  • [39] Hormesis:: A novel algorithm for the kinetic analysis of flow cytometry-acquired calcium-flux data
    Kaposi, A. S.
    Veress, G.
    Vasarhelyi, B.
    Tulassay, T.
    Treszl, A.
    CYTOMETRY PART A, 2007, 71A (07) : 518 - 518
  • [40] Novel Applications for the Flow Cytometry
    Lazzari, Maria Chiara
    Ongari, Manuele
    Di Martino, Giulia
    Ravelli, Andrea
    Vigano, Clara Virginia
    Brambilla, Paola
    Spedini, Pierangelo
    Lanza, Francesco
    DRUGS AND CELL THERAPIES IN HEMATOLOGY, 2015, 3 (02): : 65 - 70