On the Impact of Data Sampling on Hyper-parameter Optimisation of Recommendation Algorithms

被引:2
|
作者
Montanari, Matteo [1 ]
Bernardis, Cesare [1 ]
Cremonesi, Paolo [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
Recommender Systems; Optimisation; Hyper-parameter; Sampling;
D O I
10.1145/3477314.3507158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hyper-parameter optimisation (HPO) is a fundamental task that must be performed in order to achieve the highest accuracy performance that a recommendation algorithm can provide. In the recent past, with the the growth of dataset sizes, the amount of resources and time needed to perform the optimisation dramatically increased. Sampling the data used during the HPO procedure allows reducing the required resources, but it impacts the accuracy metric score. In this paper, we study the effects of optimising the hyper-parameters through a random search, sampling the users in a dataset. The results of our experiments show that sampling reduces the amount of time needed to conduct HPO, but it also influences differently the accuracy of the best configuration found by HPO, depending on the algorithm optimised and the dataset selected.
引用
收藏
页码:1399 / 1402
页数:4
相关论文
共 50 条
  • [21] Hyper-parameter Optimization for Latent Spaces
    Veloso, Bruno
    Caroprese, Luciano
    Konig, Matthias
    Teixeira, Sonia
    Manco, Giuseppe
    Hoos, Holger H.
    Gama, Joao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 249 - 264
  • [22] Federated learning with hyper-parameter optimization
    Kundroo, Majid
    Kim, Taehong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (09)
  • [23] Gaussian process hyper-parameter estimation using Parallel Asymptotically Independent Markov Sampling
    Garbuno-Inigo, A.
    DiazDelaO, F. A.
    Zuev, K. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 367 - 383
  • [24] Surrogate-assisted hyper-parameter search for portfolio optimisation: multi-period considerations
    van Zyl, Terence L.
    Woolway, Matthew
    Paskaramoorthy, Andrew
    NEURAL COMPUTING & APPLICATIONS, 2023,
  • [25] Hyper-Parameter Optimization in Support Vector Machine on Unbalanced Datasets Using Genetic Algorithms
    Guido, Rosita
    Groccia, Maria Carmela
    Conforti, Domenico
    OPTIMIZATION IN ARTIFICIAL INTELLIGENCE AND DATA SCIENCES, 2022, : 37 - 47
  • [26] Deep Learning Hyper-parameter Tuning for Sentiment Analysis in Twitter based on Evolutionary Algorithms
    Rodriguez-Barroso, Nuria
    Moya, Antonio R.
    Fernandez, Jose A.
    Romero, Elena
    Martinez-Camara, Eugenio
    Herrera, Francisco
    PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, : 255 - 264
  • [27] The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms
    Guo, Baosu
    Hu, Jingwen
    Wu, Wenwen
    Peng, Qingjin
    Wu, Fenghe
    ELECTRONICS, 2019, 8 (05)
  • [28] Gradient Hyper-parameter Optimization for Manifold Regularization
    Becker, Cassiano O.
    Ferreira, Paulo A. V.
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 339 - 344
  • [29] Total Variation with Automatic Hyper-Parameter Estimation
    Nascimento, Jacinto
    Sanches, Joao
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 443 - +
  • [30] Hyper-Parameter in Hidden Markov Random Field
    Lim, Johan
    Yu, Donghyeon
    Pyun, Kyungsuk
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (01) : 177 - 183