On the Impact of Data Sampling on Hyper-parameter Optimisation of Recommendation Algorithms

被引:2
|
作者
Montanari, Matteo [1 ]
Bernardis, Cesare [1 ]
Cremonesi, Paolo [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
Recommender Systems; Optimisation; Hyper-parameter; Sampling;
D O I
10.1145/3477314.3507158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hyper-parameter optimisation (HPO) is a fundamental task that must be performed in order to achieve the highest accuracy performance that a recommendation algorithm can provide. In the recent past, with the the growth of dataset sizes, the amount of resources and time needed to perform the optimisation dramatically increased. Sampling the data used during the HPO procedure allows reducing the required resources, but it impacts the accuracy metric score. In this paper, we study the effects of optimising the hyper-parameters through a random search, sampling the users in a dataset. The results of our experiments show that sampling reduces the amount of time needed to conduct HPO, but it also influences differently the accuracy of the best configuration found by HPO, depending on the algorithm optimised and the dataset selected.
引用
收藏
页码:1399 / 1402
页数:4
相关论文
共 50 条
  • [41] Hippo: Sharing Computations in Hyper-Parameter Optimization
    Shin, Ahnjae
    Jeong, Joo Seong
    Kim, Do Yoon
    Jung, Soyoung
    Chun, Byung-Gon
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (05): : 1038 - 1052
  • [42] Classification complexity assessment for hyper-parameter optimization
    Cai, Ziyun
    Long, Yang
    Shao, Ling
    PATTERN RECOGNITION LETTERS, 2019, 125 : 396 - 403
  • [43] Revisiting Hyper-Parameter Tuning for Search-Based Test Data Generation
    Zamani, Shayan
    Hemmati, Hadi
    SEARCH-BASED SOFTWARE ENGINEERING, SSBSE 2019, 2019, 11664 : 137 - 152
  • [44] HYPER-TUNE: Towards Efficient Hyper-parameter Tuning at Scale
    Li, Yang
    Shen, Yu
    Jiang, Huaijun
    Zhang, Wentao
    Li, Jixiang
    Liu, Ji
    Zhang, Ce
    Cui, Bin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (06): : 1256 - 1265
  • [45] Hybrid photovoltaic/thermal performance prediction based on machine learning algorithms with hyper-parameter tuning
    Ganesan, Karthikeyan
    Palanisamy, Satheeshkumar
    Krishnasamy, Valarmathi
    Salau, Ayodeji Olalekan
    Rathinam, Vinoth
    Seeni Nayakkar, Sankar Ganesh
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)
  • [46] Techniques for regularization parameter and hyper-parameter selection in PET and SPECT imaging
    Bardsley, Johnathan M.
    Goldes, John
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (02) : 267 - 280
  • [47] The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and Algorithm Selection
    Jankovic, Anja
    Popovski, Gorjan
    Eftimov, Tome
    Doerr, Carola
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 687 - 696
  • [48] An efficient hyper-parameter optimization method for supervised learning
    Shi, Ying
    Qi, Hui
    Qi, Xiaobo
    Mu, Xiaofang
    APPLIED SOFT COMPUTING, 2022, 126
  • [49] CNN hyper-parameter optimization for environmental sound classification
    Inik, Ozkan
    APPLIED ACOUSTICS, 2023, 202
  • [50] AME: Attention and Memory Enhancement in Hyper-Parameter Optimization
    Xu, Nuo
    Chang, Jianlong
    Nie, Xing
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 480 - 489