On the Impact of Data Sampling on Hyper-parameter Optimisation of Recommendation Algorithms

被引:2
|
作者
Montanari, Matteo [1 ]
Bernardis, Cesare [1 ]
Cremonesi, Paolo [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
Recommender Systems; Optimisation; Hyper-parameter; Sampling;
D O I
10.1145/3477314.3507158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hyper-parameter optimisation (HPO) is a fundamental task that must be performed in order to achieve the highest accuracy performance that a recommendation algorithm can provide. In the recent past, with the the growth of dataset sizes, the amount of resources and time needed to perform the optimisation dramatically increased. Sampling the data used during the HPO procedure allows reducing the required resources, but it impacts the accuracy metric score. In this paper, we study the effects of optimising the hyper-parameters through a random search, sampling the users in a dataset. The results of our experiments show that sampling reduces the amount of time needed to conduct HPO, but it also influences differently the accuracy of the best configuration found by HPO, depending on the algorithm optimised and the dataset selected.
引用
收藏
页码:1399 / 1402
页数:4
相关论文
共 50 条
  • [11] Hyper-parameter Selection in Advanced Synthetic Aperture Radar Imaging Algorithms
    Batu, Oezge
    Cetin, Muejdat
    2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 493 - 496
  • [12] Feature Selection and Support Vector Machine Hyper-parameter Optimisation for Spam Detection
    Diale, Melvin
    Van der Walt, Christiaan
    Celik, Turgay
    Modupe, Abiodun
    2016 PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA AND ROBOTICS AND MECHATRONICS INTERNATIONAL CONFERENCE (PRASA-ROBMECH), 2016,
  • [13] Lightweight Alternatives for Hyper-parameter Tuning in Drifting Data Streams
    Lobo, Jesus L.
    Del Ser, Javier
    Osaba, Eneko
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 304 - 311
  • [14] TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
    Garbuno-Inigo, A.
    DiazDelaO, F. A.
    Zuev, K. M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (04) : 341 - 359
  • [15] HYPER-PARAMETER OPTIMIZATION FOR CONVOLUTIONAL NEURAL NETWORK COMMITTEES BASED ON EVOLUTIONARY ALGORITHMS
    Bochinski, Erik
    Senst, Tobias
    Sikora, Thomas
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3924 - 3928
  • [16] Hyper-Parameter Optimization Using MARS Surrogate for Machine-Learning Algorithms
    Li, Yangyang
    Liu, Guangyuan
    Lu, Gao
    Jiao, Licheng
    Marturi, Naresh
    Shang, Ronghua
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (03): : 287 - 297
  • [17] A review of automatic selection methods for machine learning algorithms and hyper-parameter values
    Luo, Gang
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2016, 5 (01):
  • [18] A recommendation model for optimizing transfer learning hyper-parameter settings in building heat load prediction with limited data samples
    Bai, Di
    Ma, Shuo
    Yang, Xiaochen
    Ma, Dandan
    Ma, Xiaoyu
    Ma, Hongting
    ENERGY AND BUILDINGS, 2024, 325
  • [19] Random search for hyper-parameter optimization
    Département D'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, H3C 3J7, Canada
    J. Mach. Learn. Res., (281-305):
  • [20] Random Search for Hyper-Parameter Optimization
    Bergstra, James
    Bengio, Yoshua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 281 - 305