Hyper-Parameter in Hidden Markov Random Field

被引:0
|
作者
Lim, Johan [1 ]
Yu, Donghyeon [1 ]
Pyun, Kyungsuk [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Samsung Elect Co, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Hidden Markov random field; hyper-parameter; image segmentation;
D O I
10.5351/KJAS.2011.24.1.177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov random field(HMRF) is one of the most common model for image segmentation which is an important preprocessing in many imaging devices. The HMRF has unknown hyper-parameters on Markov random field to be estimated in segmenting testing images. However, in practice, due to computational complexity, it is often assumed to be a fixed constant. In this paper, we numerically show that the segmentation results very depending on the fixed hyper-parameter, and, if the parameter is misspecified, they further depend on the choice of the class-labelling algorithm. In contrast, the HMRF with estimated hyper-parameter provides consistent segmentation results regardless of the choice of class labelling and the estimation method. Thus, we recommend practitioners estimate the hyper-parameter even though it is computationally complex.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [1] Random search for hyper-parameter optimization
    Département D'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, H3C 3J7, Canada
    J. Mach. Learn. Res., (281-305):
  • [2] Random Search for Hyper-Parameter Optimization
    Bergstra, James
    Bengio, Yoshua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 281 - 305
  • [3] Effectiveness of Random Search in SVM hyper-parameter tuning
    Mantovani, Rafael G.
    Rossi, Andre L. D.
    Vanschoren, Joaquin
    Bischl, Bernd
    de Carvalho, Andre C. P. L. F.
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] Effects of Random Sampling on SVM Hyper-parameter Tuning
    Horvath, Tomas
    Mantovani, Rafael G.
    de Carvalho, Andre C. P. L. F.
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 268 - 278
  • [5] Local Autoencoding for Parameter Estimation in a Hidden Potts-Markov Random Field
    Song, Sanming
    Si, Bailu
    Herrmann, J. Michael
    Feng, Xisheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2324 - 2336
  • [6] Comparative Study of Random Search Hyper-Parameter Tuning for Software Effort Estimation
    Villalobos-Arias, Leonardo
    Quesada-Lopez, Christian
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING (PROMISE '21), 2021, : 21 - 29
  • [7] Gaussian process hyper-parameter estimation using Parallel Asymptotically Independent Markov Sampling
    Garbuno-Inigo, A.
    DiazDelaO, F. A.
    Zuev, K. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 367 - 383
  • [8] Hyper-parameter Recommendation for Truth Discovery
    Chen, Siying
    Ding, Xiaoou
    Liang, Zheng
    Tang, Yafeng
    Wang, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 277 - 292
  • [9] Hyper-parameter Optimization for Latent Spaces
    Veloso, Bruno
    Caroprese, Luciano
    Konig, Matthias
    Teixeira, Sonia
    Manco, Giuseppe
    Hoos, Holger H.
    Gama, Joao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 249 - 264
  • [10] Federated learning with hyper-parameter optimization
    Kundroo, Majid
    Kim, Taehong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (09)