Hyper-Parameter in Hidden Markov Random Field

被引:0
|
作者
Lim, Johan [1 ]
Yu, Donghyeon [1 ]
Pyun, Kyungsuk [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Samsung Elect Co, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Hidden Markov random field; hyper-parameter; image segmentation;
D O I
10.5351/KJAS.2011.24.1.177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov random field(HMRF) is one of the most common model for image segmentation which is an important preprocessing in many imaging devices. The HMRF has unknown hyper-parameters on Markov random field to be estimated in segmenting testing images. However, in practice, due to computational complexity, it is often assumed to be a fixed constant. In this paper, we numerically show that the segmentation results very depending on the fixed hyper-parameter, and, if the parameter is misspecified, they further depend on the choice of the class-labelling algorithm. In contrast, the HMRF with estimated hyper-parameter provides consistent segmentation results regardless of the choice of class labelling and the estimation method. Thus, we recommend practitioners estimate the hyper-parameter even though it is computationally complex.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [31] HYPER-TUNE: Towards Efficient Hyper-parameter Tuning at Scale
    Li, Yang
    Shen, Yu
    Jiang, Huaijun
    Zhang, Wentao
    Li, Jixiang
    Liu, Ji
    Zhang, Ce
    Cui, Bin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (06): : 1256 - 1265
  • [32] Image Inpainting Based on Hidden Markov Random Field
    Liu, Hongxi
    Sun, Junxi
    Sun, Hongbin
    Lin, Haibo
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 697 - 701
  • [33] Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting
    Torres, J. F.
    Gutierrez-Aviles, D.
    Troncoso, A.
    Martinez-Alvarez, F.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT I, 2019, 11506 : 259 - 269
  • [34] Optimal filters for a hidden Markov random field model
    Aggoun, L
    Benkherouf, L
    Benmerzouga, A
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 31 (13) : 1 - 9
  • [35] Techniques for regularization parameter and hyper-parameter selection in PET and SPECT imaging
    Bardsley, Johnathan M.
    Goldes, John
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (02) : 267 - 280
  • [36] CNN hyper-parameter optimization for environmental sound classification
    Inik, Ozkan
    APPLIED ACOUSTICS, 2023, 202
  • [37] AME: Attention and Memory Enhancement in Hyper-Parameter Optimization
    Xu, Nuo
    Chang, Jianlong
    Nie, Xing
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 480 - 489
  • [38] An efficient hyper-parameter optimization method for supervised learning
    Shi, Ying
    Qi, Hui
    Qi, Xiaobo
    Mu, Xiaofang
    APPLIED SOFT COMPUTING, 2022, 126
  • [39] Generating Pool of Classifiers with Hyper-Parameter Optimization for Ensemble
    Wang, Qiushi
    Chan, Hian-Leng
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [40] Efficient hyper-parameter determination for regularised linear BRDF parameter retrieval
    Zobitz, J. M.
    Quaife, T.
    Nichols, N. K.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (04) : 1437 - 1457