Hyper-Parameter in Hidden Markov Random Field

被引:0
|
作者
Lim, Johan [1 ]
Yu, Donghyeon [1 ]
Pyun, Kyungsuk [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Samsung Elect Co, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Hidden Markov random field; hyper-parameter; image segmentation;
D O I
10.5351/KJAS.2011.24.1.177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov random field(HMRF) is one of the most common model for image segmentation which is an important preprocessing in many imaging devices. The HMRF has unknown hyper-parameters on Markov random field to be estimated in segmenting testing images. However, in practice, due to computational complexity, it is often assumed to be a fixed constant. In this paper, we numerically show that the segmentation results very depending on the fixed hyper-parameter, and, if the parameter is misspecified, they further depend on the choice of the class-labelling algorithm. In contrast, the HMRF with estimated hyper-parameter provides consistent segmentation results regardless of the choice of class labelling and the estimation method. Thus, we recommend practitioners estimate the hyper-parameter even though it is computationally complex.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [21] Hyper-Parameter Tuning for the (1+(λ, λ)) GA
    Nguyen Dang
    Doerr, Carola
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 889 - 897
  • [22] Hyper-parameter Optimization Using Continuation Algorithms
    Rojas-Delgado, Jairo
    Jimenez, J. A.
    Bello, Rafael
    Lozano, J. A.
    METAHEURISTICS, MIC 2022, 2023, 13838 : 365 - 377
  • [23] Modified Grid Searches for Hyper-Parameter Optimization
    Lopez, David
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 221 - 232
  • [24] Hybrid Hyper-parameter Optimization for Collaborative Filtering
    Szabo, Peter
    Genge, Bela
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 210 - 217
  • [25] Hyper-parameter Tuning under a Budget Constraint
    Lu, Zhiyun
    Chen, Liyu
    Chiang, Chao-Kai
    Sha, Fei
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5744 - 5750
  • [26] A comparison of the galaxy peculiar velocity field with the PSCz gravity field - a Bayesian hyper-parameter method
    Ma, Yin-Zhe
    Branchini, Enzo
    Scott, Douglas
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (04) : 2880 - 2891
  • [27] Bayesian Hyper-Parameter Optimisation for Malware Detection
    ALGorain, Fahad T.
    Clark, John A.
    ELECTRONICS, 2022, 11 (10)
  • [28] Classification complexity assessment for hyper-parameter optimization
    Cai, Ziyun
    Long, Yang
    Shao, Ling
    PATTERN RECOGNITION LETTERS, 2019, 125 : 396 - 403
  • [29] Hippo: Sharing Computations in Hyper-Parameter Optimization
    Shin, Ahnjae
    Jeong, Joo Seong
    Kim, Do Yoon
    Jung, Soyoung
    Chun, Byung-Gon
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (05): : 1038 - 1052
  • [30] A New Baseline for Automated Hyper-Parameter Optimization
    Geitle, Marius
    Olsson, Roland
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, 2019, 11943 : 521 - 530