Hyper-Parameter in Hidden Markov Random Field

被引:0
|
作者
Lim, Johan [1 ]
Yu, Donghyeon [1 ]
Pyun, Kyungsuk [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Samsung Elect Co, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Hidden Markov random field; hyper-parameter; image segmentation;
D O I
10.5351/KJAS.2011.24.1.177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov random field(HMRF) is one of the most common model for image segmentation which is an important preprocessing in many imaging devices. The HMRF has unknown hyper-parameters on Markov random field to be estimated in segmenting testing images. However, in practice, due to computational complexity, it is often assumed to be a fixed constant. In this paper, we numerically show that the segmentation results very depending on the fixed hyper-parameter, and, if the parameter is misspecified, they further depend on the choice of the class-labelling algorithm. In contrast, the HMRF with estimated hyper-parameter provides consistent segmentation results regardless of the choice of class labelling and the estimation method. Thus, we recommend practitioners estimate the hyper-parameter even though it is computationally complex.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [41] RHOASo: An Early Stop Hyper-Parameter Optimization Algorithm
    Munoz Castaneda, Angel Luis
    DeCastro-Garcia, Noemi
    Escudero Garcia, David
    MATHEMATICS, 2021, 9 (18)
  • [42] Hyper-parameter Tuning for Quantum Support Vector Machine
    Demirtas, Fadime
    Tanyildizi, Erkan
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (04) : 47 - 54
  • [43] Hyper-parameter Tuning of a Decision Tree Induction Algorithm
    Mantovani, Rafael G.
    Horvath, Tomas
    Cerri, Ricardo
    Vanschoren, Joaquin
    de Carvalho, Andre C. P. L. F.
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 37 - 42
  • [44] Hyper-parameter Optimisation by Restrained Stochastic Hill Climbing
    Stubbs, Rhys
    Wilson, Kevin
    Rostami, Shahin
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 189 - 200
  • [45] Adaptively altering hyper-parameter for improved reconstruction in PET
    Mondal, PP
    Rajan, K
    Patnaik, LM
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 3460 - 3463
  • [46] Autoencoder Evaluation and Hyper-parameter Tuning in an Unsupervised Setting
    Ordway-West, Ellie
    Parveen, Pallabi
    Henslee, Austin
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 205 - 209
  • [47] Automatic CNN Compression Based on Hyper-parameter Learning
    Tian, Nannan
    Liu, Yong
    Wang, Weiping
    Meng, Dan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [48] HYPER-PARAMETER LEARNING FOR SPARSE STRUCTURED PROBABILISTIC MODELS
    Shpakova, Tatiana
    Bach, Francis
    Davies, Mike
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3347 - 3351
  • [49] Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    Salzenstein, F
    Pieczynski, W
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (04): : 205 - 220
  • [50] Sugarcane Yield Grade Prediction Using Random Forest with Forward Feature Selection and Hyper-parameter Tuning
    Charoen-Ung, Phusanisa
    Mittrapiyanuruk, Pradit
    RECENT ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY 2018, 2019, 769 : 33 - 42