The q-numerical range of a reducible matrix via a normal operator

被引:3
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
reducible matrices; q-numerical ranges; normal operators; Davis-Wielandt shells;
D O I
10.1016/j.laa.2006.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n complex matrix and 0 <= q <= 1. The q-numerical range of A is the set denoted and defined by W-q(A) = {x*Ay : x, y is an element of C-n, vertical bar x vertical bar = vertical bar y vertical bar = 1, x*y = q}. We show that the q-numerical range of a reducible 3 x 3 matrix is determined by the q-numerical range of the normal operator (Tf) (z) = zf (z), f is an element of L-2 (Delta, dx dy) for some compact convex set Delta. The result provides a performable algorithm to compute the boundary of the q-numerical range of a reducible 3 x 3 matrix. An example is also given to illustrate the detail of computations of the boundary of the range. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 465
页数:26
相关论文
共 50 条
  • [1] The boundary of the q-numerical range of a reducible matrix
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03): : 275 - 292
  • [2] The q-numerical range of matrix polynomials
    Psarrakos, PJ
    Vlamos, PM
    LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01): : 1 - 9
  • [3] On the q-numerical range of matrices and matrix polynomials
    Chien, MT
    Nakazato, H
    Psarrakos, P
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (05): : 357 - 374
  • [4] On the estimation of the q-numerical range of monic matrix polynomials
    Psarrakos, PJ
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 1 - 10
  • [5] The q-numerical range and the Davis-Wielandt shell of reducible 3 x 3 matrices
    Chien, MT
    Nakazato, H
    Psarrakos, P
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (02): : 79 - 112
  • [6] The q-numerical ranges of normal operators
    Chien, MT
    Nakazato, H
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (06): : 393 - 416
  • [7] INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES
    Aretaki, Aikaterini
    Maroulas, John
    OPUSCULA MATHEMATICA, 2011, 31 (03) : 303 - 315
  • [8] Computing the q-Numerical Range of Differential Operators
    Muhammad, Ahmed
    Shareef, Faiza Abdullah
    JOURNAL OF APPLIED MATHEMATICS, 2020, 2020
  • [9] Perturbation of the q-numerical radius of a weighted shift operator
    Chien, Mao-Ting
    Nakazato, Hiroshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) : 954 - 963
  • [10] Davis-Wielandt shell and q-numerical range
    Chien, MT
    Nakazato, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 : 15 - 31