The q-numerical range of a reducible matrix via a normal operator

被引:3
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
reducible matrices; q-numerical ranges; normal operators; Davis-Wielandt shells;
D O I
10.1016/j.laa.2006.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n complex matrix and 0 <= q <= 1. The q-numerical range of A is the set denoted and defined by W-q(A) = {x*Ay : x, y is an element of C-n, vertical bar x vertical bar = vertical bar y vertical bar = 1, x*y = q}. We show that the q-numerical range of a reducible 3 x 3 matrix is determined by the q-numerical range of the normal operator (Tf) (z) = zf (z), f is an element of L-2 (Delta, dx dy) for some compact convex set Delta. The result provides a performable algorithm to compute the boundary of the q-numerical range of a reducible 3 x 3 matrix. An example is also given to illustrate the detail of computations of the boundary of the range. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 465
页数:26
相关论文
共 50 条
  • [21] q-Numerical radius inequalities for Hilbert space
    Moghaddam, Sadaf Fakhri
    Mirmostafaee, Alireza Kamel
    Janfada, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (05): : 751 - 763
  • [22] The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix
    Itza-Ortiz, Benjamin A.
    Martinez-Avendano, Ruben A.
    Nakazato, Hiroshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [23] Some bounds and characterizations of the joint q-numerical radius
    Wang, Zhenquan
    Wang, Liguang
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (03)
  • [24] Linear operator preserving the Quadratic Numerical Range of Block Operator Matrix
    Zhai, Fahui
    Liu, Ping
    Sun, Lihong
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 196 - 199
  • [25] LIMITED APPROXIMATION OF NUMERICAL RANGE OF NORMAL MATRIX
    Adam, Maria
    Maroulas, John
    OPERATORS AND MATRICES, 2010, 4 (01): : 139 - 149
  • [26] The q-numerical radius of weighted shift operators with periodic weights
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 198 - 218
  • [27] NUMERICAL RANGE OF AN OPERATOR
    FURUTA, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 (03): : 279 - &
  • [28] NUMERICAL RANGE OF AN OPERATOR
    EMBRY, MR
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 32 (03) : 647 - &
  • [29] q-NUMERICAL RADIUS INEQUALITIES FOR PRODUCT OF COMPLEX LINEAR BOUNDED OPERATORS
    Kaadoud, Mohamed chraibi
    Moulaharabbi, Somayya
    OPERATORS AND MATRICES, 2024, 18 (02): : 375 - 388
  • [30] The block numerical range of an n x n block operator matrix
    Tretter, C
    Wagenhofer, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (04) : 1003 - 1017