The q-numerical range of a reducible matrix via a normal operator

被引:3
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
reducible matrices; q-numerical ranges; normal operators; Davis-Wielandt shells;
D O I
10.1016/j.laa.2006.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n complex matrix and 0 <= q <= 1. The q-numerical range of A is the set denoted and defined by W-q(A) = {x*Ay : x, y is an element of C-n, vertical bar x vertical bar = vertical bar y vertical bar = 1, x*y = q}. We show that the q-numerical range of a reducible 3 x 3 matrix is determined by the q-numerical range of the normal operator (Tf) (z) = zf (z), f is an element of L-2 (Delta, dx dy) for some compact convex set Delta. The result provides a performable algorithm to compute the boundary of the q-numerical range of a reducible 3 x 3 matrix. An example is also given to illustrate the detail of computations of the boundary of the range. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 465
页数:26
相关论文
共 50 条