The q-numerical range of a reducible matrix via a normal operator

被引:3
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
reducible matrices; q-numerical ranges; normal operators; Davis-Wielandt shells;
D O I
10.1016/j.laa.2006.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n complex matrix and 0 <= q <= 1. The q-numerical range of A is the set denoted and defined by W-q(A) = {x*Ay : x, y is an element of C-n, vertical bar x vertical bar = vertical bar y vertical bar = 1, x*y = q}. We show that the q-numerical range of a reducible 3 x 3 matrix is determined by the q-numerical range of the normal operator (Tf) (z) = zf (z), f is an element of L-2 (Delta, dx dy) for some compact convex set Delta. The result provides a performable algorithm to compute the boundary of the q-numerical range of a reducible 3 x 3 matrix. An example is also given to illustrate the detail of computations of the boundary of the range. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 465
页数:26
相关论文
共 50 条
  • [41] SPATIAL NUMERICAL RANGE OF AN OPERATOR
    TILLEKERATNE, K
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 76 (NOV): : 515 - 520
  • [42] NUMERICAL RANGE OF A TOEPLITZ OPERATOR
    KLEIN, EM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) : 101 - &
  • [43] On the numerical range of operator polynomials
    Farid, FO
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (03): : 223 - 239
  • [44] NORMALITY AND NUMERICAL RANGE OF AN OPERATOR
    STAMPFLI, JG
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (06) : 1021 - &
  • [45] ON THE NUMERICAL RADIUS OF AN OPERATOR MATRIX
    Sababheh, Mohammad
    Conde, Cristian
    Moradi, Hamid reza
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 417 - 434
  • [46] On the Numerical Range and Numerical Radius of the Volterra Operator
    Khadkhuu, L.
    Tsedenbayar, D.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 24 : 102 - 108
  • [47] On the numerical range of a matrix
    Zachlin, Paul F.
    Hochstenbach, Michiel E.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2): : 185 - 225
  • [48] The range of the iterated matrix adjoint operator
    Chen, TJ
    Lin, JT
    Cooke, CH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (1-2) : 97 - 102
  • [49] WHEN IS THE RANGE OF A NORMAL OPERATOR INVARIANT
    ONG, SC
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (03) : 455 - 457
  • [50] OPERATOR EXTREME POINTS AND NUMERICAL RANGE
    HARRIS, LA
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (10) : 937 - 947