Computing the q-Numerical Range of Differential Operators

被引:1
|
作者
Muhammad, Ahmed [1 ]
Shareef, Faiza Abdullah [1 ]
机构
[1] Univ Salahaddin, Coll Sci, Dept Math, Erbil, Iraq
关键词
14;
D O I
10.1155/2020/6584805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear operator on a Hilbert space may be approximated with finite matrices by choosing an orthonormal basis of thez Hilbert space. In this paper, we establish an approximation of the q-numerical range of bounded and unbounnded operator matrices by variational methods. Application to Schrodinger operator, Stokes operator, and Hain-Lust operator is given.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The q-numerical ranges of normal operators
    Chien, MT
    Nakazato, H
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (06): : 393 - 416
  • [2] The q-numerical range of matrix polynomials
    Psarrakos, PJ
    Vlamos, PM
    LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01): : 1 - 9
  • [3] The boundary of the q-numerical range of a reducible matrix
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03): : 275 - 292
  • [4] On the q-numerical range of matrices and matrix polynomials
    Chien, MT
    Nakazato, H
    Psarrakos, P
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (05): : 357 - 374
  • [5] INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES
    Aretaki, Aikaterini
    Maroulas, John
    OPUSCULA MATHEMATICA, 2011, 31 (03) : 303 - 315
  • [6] Davis-Wielandt shell and q-numerical range
    Chien, MT
    Nakazato, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 : 15 - 31
  • [7] The q-numerical radius of weighted shift operators with periodic weights
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 198 - 218
  • [8] On the estimation of the q-numerical range of monic matrix polynomials
    Psarrakos, PJ
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 1 - 10
  • [9] The q-numerical range of a reducible matrix via a normal operator
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 440 - 465
  • [10] THE q-NUMERICAL RANGE OF 3 x 3 TRIDIAGONAL MATRICES
    Chien, Mao-Ting
    Nakazato, Hiroshi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 376 - 390