Space-time regularity of the solution to Maxwell's equations in non-convex domains

被引:3
|
作者
Garcia, E
Labrunie, S
机构
[1] DAMIle De France, CEA, F-91680 Bruyeres Le Chatel, France
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/S1631-073X(02)02221-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Singular Complement Method, developed in order to solve Maxwell's equations in non-convex domains (cf. [5,2] for two-dimensional domains in absence and in presence of charges. [3] for axisymmetric domains). is based on an orthogonal decomposition of the space of solutions. After recalling the classical regularity results in Lipschitz domains, we give several results of space and time regularity of the solution and of its components, which are valid for several geometries effectively used for numerical computations. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [21] Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra
    Mariusz Klimek
    Stefan Kurz
    Sebastian Schöps
    Thomas Weiland
    Advances in Applied Clifford Algebras, 2018, 28
  • [22] Space-Time Discretization of Maxwell's Equations in the Setting of Geometric Algebra
    Klimek, Mariusz
    Roemer, Ulrich
    Schoeps, Sebastian
    Weiland, Thomas
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 1101 - 1104
  • [23] Boundary stabilization of Maxwell's equations with space-time variable coefficients
    Nicaise, S
    Pignotti, C
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 : 563 - 578
  • [24] Symbolic Studies of Maxwell's Equations in Space-Time Algebra Formalism
    Korol'kova, A. V.
    Gevorkyan, M. N.
    Fedorov, A. V.
    Shtepa, K. A.
    Kulyabov, D. S.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 166 - 171
  • [25] Numerical study of conforming space-time methods for Maxwell's equations
    Hauser, Julia I. M.
    Zank, Marco
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (02)
  • [26] On the solution of Maxwell's equations in polygonal domains
    Nkemzi, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (09) : 1053 - 1080
  • [27] On quasilinear non-uniformly elliptic equations in some non-convex domains
    Tersenov, AS
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (11-12) : 2165 - 2185
  • [28] MAXWELL EQUATIONS IN 6-DIMENSIONAL SPACE-TIME
    CHANDOLA, HC
    RAJPUT, BS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1986, 24 (02) : 58 - 64
  • [29] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [30] Asymptotic properties of Maxwell equations in Schwarzschild space-time
    Inglese, W
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 101 - 104