Space-time regularity of the solution to Maxwell's equations in non-convex domains

被引:3
|
作者
Garcia, E
Labrunie, S
机构
[1] DAMIle De France, CEA, F-91680 Bruyeres Le Chatel, France
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/S1631-073X(02)02221-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Singular Complement Method, developed in order to solve Maxwell's equations in non-convex domains (cf. [5,2] for two-dimensional domains in absence and in presence of charges. [3] for axisymmetric domains). is based on an orthogonal decomposition of the space of solutions. After recalling the classical regularity results in Lipschitz domains, we give several results of space and time regularity of the solution and of its components, which are valid for several geometries effectively used for numerical computations. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [41] A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time
    Pelykh V.O.
    Taistra Y.V.
    Journal of Mathematical Sciences, 2018, 229 (2) : 162 - 173
  • [42] Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm
    Lai R.
    Sun G.
    Zhang W.
    Zhang T.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (09): : 2761 - 2767
  • [43] THE OBSTACLE PROBLEM FOR MONGE-AMPERE TYPE EQUATIONS IN NON-CONVEX DOMAINS
    Xiong, Jingang
    Bao, Jiguang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 59 - 68
  • [44] Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains
    Bonito, Andrea
    Guermond, Jean-Luc
    Luddens, Francky
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 498 - 512
  • [45] Network Connectivity in Non-Convex Domains With Reflections
    Georgiou, Orestis
    Bocus, Mohammud Z.
    Rahman, Mohammed R.
    Dettmann, Carl P.
    Coon, Justin P.
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (03) : 427 - 430
  • [46] FIXED-POINTS IN NON-CONVEX DOMAINS
    CHANDLER, E
    FAULKNER, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (04) : 635 - 638
  • [47] Organization of Data in Non-convex Spatial Domains
    Perlman, Eric
    Burns, Randal
    Kazhdan, Michael
    Murphy, Rebecca R.
    Ball, William P.
    Amenta, Nina
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2010, 6187 : 342 - +
  • [49] Existence and regularity of a weak solution to Maxwell's equations with a thermal effect
    Yin, HM
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (10) : 1199 - 1213
  • [50] Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains
    Kim, EH
    Song, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) : 541 - 550