Space-time regularity of the solution to Maxwell's equations in non-convex domains

被引:3
|
作者
Garcia, E
Labrunie, S
机构
[1] DAMIle De France, CEA, F-91680 Bruyeres Le Chatel, France
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/S1631-073X(02)02221-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Singular Complement Method, developed in order to solve Maxwell's equations in non-convex domains (cf. [5,2] for two-dimensional domains in absence and in presence of charges. [3] for axisymmetric domains). is based on an orthogonal decomposition of the space of solutions. After recalling the classical regularity results in Lipschitz domains, we give several results of space and time regularity of the solution and of its components, which are valid for several geometries effectively used for numerical computations. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [31] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [32] Discretization of Maxwell's Equations for Rotating Observers Using Space-time Algebra
    Klimek, Mariusz
    Kurz, Stefan
    Schöps, Sebastian
    Weiland, Thomas
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3707 - 3707
  • [33] On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains
    Colbrook, Matthew J.
    Flyer, Natasha
    Fornberg, Bengt
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 996 - 1016
  • [35] Maximal regularity for the Stokes system on noncylindrical space-time domains
    Saal, Juergen
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (03) : 617 - 641
  • [36] On the solution of Maxwell's equations in axisymmetric domains with edges
    Nkemzi, B
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (08): : 571 - 592
  • [37] Reflected BSDEs in non-convex domains
    Chassagneux, Jean-Francois
    Nadtochiy, Sergey
    Richou, Adrien
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 183 (3-4) : 1237 - 1284
  • [38] Reflected BSDEs in non-convex domains
    Jean-François Chassagneux
    Sergey Nadtochiy
    Adrien Richou
    Probability Theory and Related Fields, 2022, 183 : 1237 - 1284
  • [39] CLASS OF SPACE-TIME SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
    LEROY, J
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1978, 64 (04): : 130 - 152
  • [40] THE CAUCHY-PROBLEM FOR THE MAXWELL EQUATIONS IN A CURVED SPACE-TIME
    LEOPOLD, HG
    MATHEMATISCHE NACHRICHTEN, 1981, 101 : 61 - 74