Space-Time Discretization of Maxwell's Equations in the Setting of Geometric Algebra

被引:0
|
作者
Klimek, Mariusz [1 ]
Roemer, Ulrich [2 ]
Schoeps, Sebastian [1 ,2 ]
Weiland, Thomas [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Grad Sch Computat Engn, Dolivostr 15, D-64293 Darmstadt, Germany
[2] Tech Univ Darmstadt, Inst Theorie Elektromagnet Felder, D-64289 Darmstadt, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Geometric Algebra (GA) for Minkowski space-time and Maxwell's equations in the setting of GA are briefly outlined. The constitutive equations are discussed in more detail. A discrete version of GA for a Cartesian grid is investigated and is shown to be equivalent to Tonti's approach. Furthermore, under quite natural assumptions both schemes coincide with the Finite Integration Technique (in 3D space) and Leap-Frog time integration.
引用
收藏
页码:1101 / 1104
页数:4
相关论文
共 50 条
  • [1] Discretization of Maxwell's Equations in the Setting of Geometric Algebra
    Klimek, Mariusz
    Schoeps, Sebastian
    Weiland, Thomas
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 517 - 520
  • [2] Discretization of Maxwell's Equations for Rotating Observers Using Space-time Algebra
    Klimek, Mariusz
    Kurz, Stefan
    Schöps, Sebastian
    Weiland, Thomas
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3707 - 3707
  • [3] Discretization of Maxwell's Equations for Non-inertial Observers Using Space-Time Algebra
    Klimek, Mariusz
    Kurz, Stefan
    Schops, Sebastian
    Weiland, Thomas
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (01)
  • [4] Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra
    Mariusz Klimek
    Stefan Kurz
    Sebastian Schöps
    Thomas Weiland
    Advances in Applied Clifford Algebras, 2018, 28
  • [5] Symbolic Studies of Maxwell's Equations in Space-Time Algebra Formalism
    Korol'kova, A. V.
    Gevorkyan, M. N.
    Fedorov, A. V.
    Shtepa, K. A.
    Kulyabov, D. S.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 166 - 171
  • [6] Space-time orientations and Maxwell's equations
    Marmo, G
    Parasecoli, E
    Tulczyjew, WM
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (02) : 209 - 248
  • [7] Maxwell equations for quantum space-time
    Mir-Kasimov, R. M.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 209 - 217
  • [8] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939
  • [9] Fluid Maxwell's equations in the language of geometric algebra
    Parameswaran, R.
    Panakkal, Susan Mathew
    Vedan, M. J.
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (02):
  • [10] Geometric aspects of the simplicial discretization of Maxwell's equations - Abstract
    Teixeira, FL
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2001, 15 (04) : 479 - 480