MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES

被引:32
|
作者
Chen, Wenbin [1 ]
Wang, Yanqiu [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
H(curl); H(div); mixed finite element; finite element exterior calculus; generalized barycentric coordinates; EXTERIOR CALCULUS; CONSTRUCTION; APPROXIMATION; INTERPOLATION; SPACES; FORMS;
D O I
10.1090/mcom/3152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
引用
收藏
页码:2053 / 2087
页数:35
相关论文
共 50 条
  • [21] A P2 H-Div-Nonconforming-H-Curl Finite Element for the Stokes Equations on Triangular Meshes
    Huang, Yunqing
    Xu, Xuejun
    Zhang, Shangyou
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024,
  • [22] A Refinement-by-Superposition hp-Method for H(curl)- and H(div)-Conforming Discretizations
    Harmon, Jake J.
    Corrado, Jeremiah
    Notaros, Branislav M.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (12) : 9357 - 9364
  • [23] A quadratic nonconforming vector finite element for H(curl; Ω) ∧ H(div; Ω)
    Brenner, Susanne C.
    Sung, Li-Yeng
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 892 - 896
  • [24] Multigrid in H(div) and H(curl)
    Arnold, DN
    Falk, RS
    Winther, R
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 197 - 217
  • [25] Multigrid in H (div) and H (curl)
    Douglas N. Arnold
    Richard S. Falk
    Ragnar Winther
    Numerische Mathematik, 2000, 85 : 197 - 217
  • [26] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [27] H(CURL2)-CONFORMING FINITE ELEMENTS IN 2 DIMENSIONS AND APPLICATIONS TO THE QUAD-CURL PROBLEM
    Zhang, Qian
    Wang, Lixiu
    Zhang, Zhimin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1527 - A1547
  • [28] TWO FAMILIES OF H(div) MIXED FINITE ELEMENTS ON QUADRILATERALS OF MINIMAL DIMENSION
    Arbogast, Todd
    Correa, Maicon R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3332 - 3356
  • [29] Wavelet bases in H(div) and H(curl)
    Urban, K
    MATHEMATICS OF COMPUTATION, 2001, 70 (234) : 739 - 766
  • [30] On a general implementation of h- and p-adaptive curl-conforming finite elements
    Olm, Marc
    Badia, Santiago
    Martin, Alberto F.
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 132 : 74 - 91