A Refinement-by-Superposition hp-Method for H(curl)- and H(div)-Conforming Discretizations

被引:1
|
作者
Harmon, Jake J. [1 ,2 ]
Corrado, Jeremiah [1 ,3 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Los Alamos Natl Lab, Theoret Div, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[3] Hewlett Packard Enterprise, Chapel Language Team, Seattle, WA 98101 USA
关键词
Computational electromagnetics (CEMs); continuous Galerkin; finite element method (FEM); higher order methods; hp-refinement; refinement-by-superposition (RBS); FINITE-ELEMENT METHOD; P-VERSION; DISCRETE COMPACTNESS; ADAPTIVITY; 1-DIMENSION; CONVERGENCE; ELECTROMAGNETICS; H(DIV);
D O I
10.1109/TAP.2023.3331574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present refinement-by-superposition (RBS) hp-refinement infrastructure for computational electromagnetics (CEMs), which permits exponential rates of convergence. In contrast to dominant approaches to hp-refinement for continuous Galerkin methods, which rely on explicit constraint equations, the multilevel strategy presented drastically reduces the implementation complexity. Through the RBS methodology, enforcement of continuity occurs by construction, enabling arbitrary levels of refinement with ease, and without the practical (but not theoretical) limitations of constrained-node refinement. We outline the construction of the RBS hp-method for refinement with H (curl)- and H (div)-conforming finite cells. Numerical simulations for the 2-D finite element method (FEM) solution of the Maxwell eigenvalue problem demonstrate the effectiveness of RBS hp-refinement. As an additional goal of this work, we aim to promote the use of mixed-order (low- and high-order) elements in practical CEM applications.
引用
收藏
页码:9357 / 9364
页数:8
相关论文
共 50 条
  • [1] H(div) and H(curl)-conforming virtual element methods
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 303 - 332
  • [2] EFFICIENT ASSEMBLY OF H(div) AND H(curl) CONFORMING FINITE ELEMENTS
    Rognes, Marie E.
    Kirby, Robert C.
    Logg, Anders
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4130 - 4151
  • [3] MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES
    Chen, Wenbin
    Wang, Yanqiu
    MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2053 - 2087
  • [4] Multigrid in H(div) and H(curl)
    Arnold, DN
    Falk, RS
    Winther, R
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 197 - 217
  • [5] Multigrid in H (div) and H (curl)
    Douglas N. Arnold
    Richard S. Falk
    Ragnar Winther
    Numerische Mathematik, 2000, 85 : 197 - 217
  • [6] H1, H(curl) and H(div) conforming elements on polygon-based prisms and cones
    Chen, Wenbin
    Wang, Yanqiu
    NUMERISCHE MATHEMATIK, 2020, 145 (04) : 973 - 1004
  • [7] Wavelet bases in H(div) and H(curl)
    Urban, K
    MATHEMATICS OF COMPUTATION, 2001, 70 (234) : 739 - 766
  • [8] Electromagnetic scattering simulation using an H(curl) conforming hp finite element method in three dimensions
    Ledger, P. D.
    Morgan, K.
    Hassan, O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (08) : 1267 - 1296
  • [9] SPECTRAL EQUIVALENCE OF LOW-ORDER DISCRETIZATIONS FOR HIGH-ORDER H(CURL) AND H(DIV) SPACES\ast
    Dohrmann, Clark R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3992 - A4014
  • [10] HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS
    Falk, Richard S.
    Gatto, Paolo
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 115 - 143