A Refinement-by-Superposition hp-Method for H(curl)- and H(div)-Conforming Discretizations

被引:1
|
作者
Harmon, Jake J. [1 ,2 ]
Corrado, Jeremiah [1 ,3 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Los Alamos Natl Lab, Theoret Div, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[3] Hewlett Packard Enterprise, Chapel Language Team, Seattle, WA 98101 USA
关键词
Computational electromagnetics (CEMs); continuous Galerkin; finite element method (FEM); higher order methods; hp-refinement; refinement-by-superposition (RBS); FINITE-ELEMENT METHOD; P-VERSION; DISCRETE COMPACTNESS; ADAPTIVITY; 1-DIMENSION; CONVERGENCE; ELECTROMAGNETICS; H(DIV);
D O I
10.1109/TAP.2023.3331574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present refinement-by-superposition (RBS) hp-refinement infrastructure for computational electromagnetics (CEMs), which permits exponential rates of convergence. In contrast to dominant approaches to hp-refinement for continuous Galerkin methods, which rely on explicit constraint equations, the multilevel strategy presented drastically reduces the implementation complexity. Through the RBS methodology, enforcement of continuity occurs by construction, enabling arbitrary levels of refinement with ease, and without the practical (but not theoretical) limitations of constrained-node refinement. We outline the construction of the RBS hp-method for refinement with H (curl)- and H (div)-conforming finite cells. Numerical simulations for the 2-D finite element method (FEM) solution of the Maxwell eigenvalue problem demonstrate the effectiveness of RBS hp-refinement. As an additional goal of this work, we aim to promote the use of mixed-order (low- and high-order) elements in practical CEM applications.
引用
收藏
页码:9357 / 9364
页数:8
相关论文
共 50 条
  • [41] Preconditioners for higher order finite element discretizations of H(div)-elliptic problem
    Wang J.
    Zhong L.
    Shu S.
    Computational and Applied Mathematics, 2010, 29 (01) : 61 - 80
  • [42] Preconditioners for higher order finite element discretizations of H(div)-elliptic problem
    Wang, Junxian
    Zhong, Liuqiang
    Shu, Shi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (01): : 61 - 80
  • [43] ON H(div)-CONFORMING METHODS FOR DOUBLE-DIFFUSION EQUATIONS IN POROUS MEDIA
    Burger, Raimund
    Mendez, Paul E.
    Ruiz-Baier, Ricardo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1318 - 1343
  • [44] H(div) conforming finite element methods for the coupled Stokes and Darcy problem
    Chen, Yumei
    Huang, Feiteng
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4337 - 4349
  • [45] Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div)
    Liu, Huaqing
    Zhang, Linbo
    Zhang, Xiaodi
    Zheng, Weiying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367
  • [46] Divergence-Free H(div)-Conforming Hierarchical Bases for Magnetohydrodynamics (MHD)
    Cai, Wei
    Wu, Jian
    Xin, Jianguo
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2013, 1 (01) : 19 - 35
  • [47] A NEW H(div)-CONFORMING p-INTERPOLATION OPERATOR IN TWO DIMENSIONS
    Bespalov, Alexei
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (02): : 255 - 275
  • [48] A locking-free and mass conservative H(div) conforming DG method for the Biot′s consolidation model
    He, Linshuang
    Feng, Minfu
    Guo, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 136 : 151 - 164
  • [49] A low-order divergence-free H(div)-conforming finite element method for Stokes flows
    Li, Xu
    Rui, Hongxing
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3711 - 3734
  • [50] SIMPLEX-AVERAGED FINITE ELEMENT METHODS FOR H(GRAD), H(CURL), AND H(DIV) CONVECTION-DIFFUSION PROBLEMS
    Wu, Shuonan
    Xu, Jinchao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 884 - 906