A Refinement-by-Superposition hp-Method for H(curl)- and H(div)-Conforming Discretizations

被引:1
|
作者
Harmon, Jake J. [1 ,2 ]
Corrado, Jeremiah [1 ,3 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Los Alamos Natl Lab, Theoret Div, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[3] Hewlett Packard Enterprise, Chapel Language Team, Seattle, WA 98101 USA
关键词
Computational electromagnetics (CEMs); continuous Galerkin; finite element method (FEM); higher order methods; hp-refinement; refinement-by-superposition (RBS); FINITE-ELEMENT METHOD; P-VERSION; DISCRETE COMPACTNESS; ADAPTIVITY; 1-DIMENSION; CONVERGENCE; ELECTROMAGNETICS; H(DIV);
D O I
10.1109/TAP.2023.3331574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present refinement-by-superposition (RBS) hp-refinement infrastructure for computational electromagnetics (CEMs), which permits exponential rates of convergence. In contrast to dominant approaches to hp-refinement for continuous Galerkin methods, which rely on explicit constraint equations, the multilevel strategy presented drastically reduces the implementation complexity. Through the RBS methodology, enforcement of continuity occurs by construction, enabling arbitrary levels of refinement with ease, and without the practical (but not theoretical) limitations of constrained-node refinement. We outline the construction of the RBS hp-method for refinement with H (curl)- and H (div)-conforming finite cells. Numerical simulations for the 2-D finite element method (FEM) solution of the Maxwell eigenvalue problem demonstrate the effectiveness of RBS hp-refinement. As an additional goal of this work, we aim to promote the use of mixed-order (low- and high-order) elements in practical CEM applications.
引用
收藏
页码:9357 / 9364
页数:8
相关论文
共 50 条
  • [31] Polynomial extension operators for H1, H(curl) and H(div) -: Spaces on a cube
    Costabel, M.
    Dauge, M.
    Demkowicz, L.
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 1967 - 1999
  • [32] A reconstructed discontinuous approximation on unfitted meshes to H(curl) and H(div) interface problems
    Li, Ruo
    Liu, Qicheng
    Yang, Fanyi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [33] Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl)
    De Siqueira, Denise
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 269 - 276
  • [34] MIXED FINITE-ELEMENT IN 3D IN H(DIV) AND H(CURL)
    NEDELEC, JC
    LECTURE NOTES IN MATHEMATICS, 1986, 1192 : 321 - 325
  • [35] Fluid-structure interaction with H(div)-conforming finite elements
    Neunteufel, Michael
    Schoberl, Joachim
    COMPUTERS & STRUCTURES, 2021, 243
  • [36] H(div) conforming methods for the rotation form of the incompressible fluid equations
    Xi Chen
    Corina Drapaca
    Calcolo, 2020, 57
  • [37] Construction of H(div)-conforming mixed finite elements on cuboidal hexahedra
    Arbogast, Todd
    Tao, Zhen
    NUMERISCHE MATHEMATIK, 2019, 142 (01) : 1 - 32
  • [38] Fluid-structure interaction with H(div)-conforming finite elements
    Neunteufel, Michael
    Schöberl, Joachim
    Computers and Structures, 2021, 243
  • [39] H(div) conforming and DG methods for incompressible Euler's equations
    Guzman, Johnny
    Shu, Chi-Wang
    Sequeira, Filander A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1733 - 1771
  • [40] H(div) conforming methods for the rotation form of the incompressible fluid equations
    Chen, Xi
    Drapaca, Corina
    CALCOLO, 2020, 57 (04)