MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES

被引:32
|
作者
Chen, Wenbin [1 ]
Wang, Yanqiu [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
H(curl); H(div); mixed finite element; finite element exterior calculus; generalized barycentric coordinates; EXTERIOR CALCULUS; CONSTRUCTION; APPROXIMATION; INTERPOLATION; SPACES; FORMS;
D O I
10.1090/mcom/3152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
引用
收藏
页码:2053 / 2087
页数:35
相关论文
共 50 条
  • [31] Full H(div)-approximation of linear elasticity on quadrilateral meshes based on ABF finite elements
    Quinelato, Thiago O.
    Loula, Abimael F. D.
    Correa, Maicon R.
    Arbogast, Todd
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 120 - 142
  • [32] FINITE ELEMENTS FOR DIV DIV CONFORMING SYMMETRIC TENSORS IN THREE DIMENSIONS
    Chen, Long
    Huang, Xuehai
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1107 - 1142
  • [33] A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes
    Ingelström, P
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (01) : 106 - 114
  • [34] Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl)
    De Siqueira, Denise
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 269 - 276
  • [35] Weak Galerkin finite element methods for H(curl; O) and H(curl, div; O)-elliptic problems
    Kumar, Raman
    Deka, Bhupen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 210 - 221
  • [36] A FAMILY OF H(div) FINITE ELEMENT APPROXIMATIONS ON POLYGONAL MESHES
    Talischi, Cameron
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A1067 - A1088
  • [37] MIXED FINITE-ELEMENT IN 3D IN H(DIV) AND H(CURL)
    NEDELEC, JC
    LECTURE NOTES IN MATHEMATICS, 1986, 1192 : 321 - 325
  • [38] New curl conforming finite elements on parallelepiped
    J. H. Kim
    Do Y. Kwak
    Numerische Mathematik, 2015, 131 : 473 - 488
  • [39] An H(div)-Conforming Finite Element Method for the Biot Consolidation Model
    Zeng, Yuping
    Cai, Mingchao
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 558 - 579
  • [40] New curl conforming finite elements on parallelepiped
    Kim, J. H.
    Kwak, Do Y.
    NUMERISCHE MATHEMATIK, 2015, 131 (03) : 473 - 488