MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES
被引:32
|
作者:
Chen, Wenbin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
Chen, Wenbin
[1
]
Wang, Yanqiu
论文数: 0引用数: 0
h-index: 0
机构:
Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
Wang, Yanqiu
[2
,3
]
机构:
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAUniv Minnesota, Sch Math, Minneapolis, MN 55455 USA
Zhang, Qian
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R ChinaUniv Minnesota, Sch Math, Minneapolis, MN 55455 USA
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Liu, Huaqing
Zhang, Linbo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Zhang, Linbo
Zhang, Xiaodi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Zhang, Xiaodi
Zheng, Weiying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS,LSEC, Beijing 100190, Peoples R China