Sums of Cantor sets yielding an interval

被引:19
|
作者
Cabrelli, CA
Hare, KE
Molter, UM
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Cantor set; sums of sets;
D O I
10.1017/S1446788700009058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveira showing that when s is irrational C-a + C-a(s) is an interval if and only if a/(1 -2a) a(s)/(1-2a(s)) greater than or equal to 1.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 50 条
  • [1] Sums of Cantor sets
    Cabrelli, CA
    Hare, KE
    Molter, UM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1299 - 1313
  • [2] ON SUMS OF SEMIBOUNDED CANTOR SETS
    Fillman, Jake
    Tidwell, Sara H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 737 - 754
  • [3] On the arithmetic sums of Cantor sets
    Eroglu, Kemal Ilgar
    NONLINEARITY, 2007, 20 (05) : 1145 - 1161
  • [4] On the measure of arithmetic sums of Cantor sets
    Solomyak, B
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (01): : 133 - 141
  • [5] SUMS OF TWO HOMOGENEOUS CANTOR SETS
    Takahashi, Yuki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 1817 - 1832
  • [6] On sums of nearly affine Cantor sets
    Gorodetski, Anton
    Northrup, Scott
    FUNDAMENTA MATHEMATICAE, 2018, 240 (03) : 205 - 219
  • [7] On the topology of arithmetic sums of regular Cantor sets
    Moreira, CG
    Morales, EM
    Rivera-Letelier, J
    NONLINEARITY, 2000, 13 (06) : 2077 - 2087
  • [8] THE STRUCTURE OF ARITHMETIC SUMS OF AFFINE CANTOR SETS
    Anisca, Razvan
    Chlebovec, Christopher
    Ilie, Monica
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 325 - 332
  • [9] MINKOWSKI SUMS OF CANTOR-TYPE SETS
    Nikodem, Kazimierz
    Pales, Zsolt
    COLLOQUIUM MATHEMATICUM, 2010, 119 (01) : 95 - 108
  • [10] N-fold sums of cantor sets
    Hare, KE
    O'Neil, TC
    MATHEMATIKA, 2000, 47 (93-94) : 243 - 250