ON SUMS OF SEMIBOUNDED CANTOR SETS

被引:0
|
作者
Fillman, Jake [1 ]
Tidwell, Sara H. [1 ]
机构
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
spectral theory; sums of Cantor sets; thickness; DENSITY-OF-STATES; SCHRODINGER-OPERATORS; SPECTRAL PROPERTIES; DIMENSION;
D O I
10.1216/rmj.2023.53.737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain half-lines. We also give examples to show our criteria are sharp in suitable regimes.
引用
收藏
页码:737 / 754
页数:18
相关论文
共 50 条
  • [1] Sums of Cantor sets
    Cabrelli, CA
    Hare, KE
    Molter, UM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1299 - 1313
  • [2] On the arithmetic sums of Cantor sets
    Eroglu, Kemal Ilgar
    NONLINEARITY, 2007, 20 (05) : 1145 - 1161
  • [3] On the measure of arithmetic sums of Cantor sets
    Solomyak, B
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (01): : 133 - 141
  • [4] SUMS OF TWO HOMOGENEOUS CANTOR SETS
    Takahashi, Yuki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 1817 - 1832
  • [5] Sums of Cantor sets yielding an interval
    Cabrelli, CA
    Hare, KE
    Molter, UM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 : 405 - 418
  • [6] On sums of nearly affine Cantor sets
    Gorodetski, Anton
    Northrup, Scott
    FUNDAMENTA MATHEMATICAE, 2018, 240 (03) : 205 - 219
  • [7] On the topology of arithmetic sums of regular Cantor sets
    Moreira, CG
    Morales, EM
    Rivera-Letelier, J
    NONLINEARITY, 2000, 13 (06) : 2077 - 2087
  • [8] THE STRUCTURE OF ARITHMETIC SUMS OF AFFINE CANTOR SETS
    Anisca, Razvan
    Chlebovec, Christopher
    Ilie, Monica
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 325 - 332
  • [9] MINKOWSKI SUMS OF CANTOR-TYPE SETS
    Nikodem, Kazimierz
    Pales, Zsolt
    COLLOQUIUM MATHEMATICUM, 2010, 119 (01) : 95 - 108
  • [10] N-fold sums of cantor sets
    Hare, KE
    O'Neil, TC
    MATHEMATIKA, 2000, 47 (93-94) : 243 - 250