ON SUMS OF SEMIBOUNDED CANTOR SETS

被引:0
|
作者
Fillman, Jake [1 ]
Tidwell, Sara H. [1 ]
机构
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
spectral theory; sums of Cantor sets; thickness; DENSITY-OF-STATES; SCHRODINGER-OPERATORS; SPECTRAL PROPERTIES; DIMENSION;
D O I
10.1216/rmj.2023.53.737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain half-lines. We also give examples to show our criteria are sharp in suitable regimes.
引用
收藏
页码:737 / 754
页数:18
相关论文
共 50 条
  • [41] On arithmetic properties of Cantor sets
    Lu Cui
    Minghui Ma
    Science China(Mathematics), 2022, 65 (10) : 2035 - 2060
  • [42] Kakeya sets in cantor directions
    Bateman, Michael
    Katz, Nets Hawk
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (01) : 73 - 81
  • [43] Squeezing functions and Cantor sets
    Arosio, Leandro
    Fornaess, John Erik
    Shcherbina, Nikolay
    Wold, Erlend F.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 1359 - 1369
  • [44] GENERALIZED CAPACITY OF CANTOR SETS
    BEARDON, AF
    QUARTERLY JOURNAL OF MATHEMATICS, 1968, 19 (75): : 301 - &
  • [45] Dimension functions of cantor sets
    Garcia, Ignacio
    Molter, Ursula
    Scotto, Roberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3151 - 3161
  • [46] CANTOR SETS AND FIELDS OF REALS
    Kuba, Gerald
    MATEMATICKI VESNIK, 2022, 74 (04): : 249 - 259
  • [47] On Cantor sets and doubling measures
    Csoernyei, Marianna
    Suomala, Ville
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 680 - 691
  • [48] Products of two Cantor sets
    Takahashi, Yuki
    NONLINEARITY, 2017, 30 (05) : 2114 - 2137
  • [49] On the Visibility of Homogeneous Cantor Sets
    Cai, Yi
    Chen, Yufei
    FRACTAL AND FRACTIONAL, 2024, 8 (12)
  • [50] TAMING CANTOR SETS IN EN
    MCMILLAN, DR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (05) : 706 - &