ON SUMS OF SEMIBOUNDED CANTOR SETS

被引:0
|
作者
Fillman, Jake [1 ]
Tidwell, Sara H. [1 ]
机构
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
spectral theory; sums of Cantor sets; thickness; DENSITY-OF-STATES; SCHRODINGER-OPERATORS; SPECTRAL PROPERTIES; DIMENSION;
D O I
10.1216/rmj.2023.53.737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain half-lines. We also give examples to show our criteria are sharp in suitable regimes.
引用
收藏
页码:737 / 754
页数:18
相关论文
共 50 条
  • [21] ON THE SHAPE OF CANTOR SETS
    COOPER, D
    PIGNATARO, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (02) : 203 - 221
  • [22] Julia sets and wild Cantor sets
    Fletcher, Alastair
    Wu, Jang-Mei
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 169 - 176
  • [23] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176
  • [24] On the intersection of Cantor τ-sets
    Moshchevitin, NG
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 155 - 156
  • [25] Parabolic Cantor sets
    Urbanski, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 241 - 277
  • [26] A Characteristic of Cantor Sets
    麦结华
    柳州师专学报, 2013, 28 (01) : 108 - 110
  • [27] Hairy Cantor sets
    Cheraghi, Davoud
    Pedramfar, Mohammad
    ADVANCES IN MATHEMATICS, 2022, 398
  • [28] Nested Cantor sets
    Pierre Berger
    Carlos Gustavo Moreira
    Mathematische Zeitschrift, 2016, 283 : 419 - 435
  • [29] SCRAMBLED CANTOR SETS
    Geschke, Stefan
    Grebik, Jan
    Miller, Benjamin D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4461 - 4468
  • [30] Nested Cantor sets
    Berger, Pierre
    Moreira, Carlos Gustavo
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 419 - 435