Sums of Cantor sets yielding an interval

被引:19
|
作者
Cabrelli, CA
Hare, KE
Molter, UM
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Cantor set; sums of sets;
D O I
10.1017/S1446788700009058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveira showing that when s is irrational C-a + C-a(s) is an interval if and only if a/(1 -2a) a(s)/(1-2a(s)) greater than or equal to 1.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 50 条
  • [21] When the algebraic difference of two central Cantor sets is an interval?
    Nowakowski, Piotr
    ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 163 - 185
  • [22] Exceptional Sets for Sums of Prime Cubes in Short Interval
    Chen, Gongrui
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [23] Semi-fast convergent sequences and k-sums of central Cantor sets
    Artur Bartoszewicz
    Małgorzata Filipczak
    Franciszek Prus-Wiśniowski
    European Journal of Mathematics, 2020, 6 : 1523 - 1536
  • [24] Semi-fast convergent sequences and k-sums of central Cantor sets
    Bartoszewicz, Artur
    Filipczak, Malgorzata
    Prus-Wisniowski, Franciszek
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (04) : 1523 - 1536
  • [25] COMPUTABILITY OF TOPOLOGICAL ENTROPY: FROM GENERAL SYSTEMS TO TRANSFORMATIONS ON CANTOR SETS AND THE INTERVAL
    Gangloff, Silvere
    Herrera, Alonso
    Rojas, Cristobal
    Sablik, Mathieu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4259 - 4286
  • [26] REGULAR CANTOR SETS
    MICHON, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (19): : 673 - 675
  • [27] ON THE SHAPE OF CANTOR SETS
    COOPER, D
    PIGNATARO, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (02) : 203 - 221
  • [28] Julia sets and wild Cantor sets
    Fletcher, Alastair
    Wu, Jang-Mei
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 169 - 176
  • [29] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176
  • [30] On the intersection of Cantor τ-sets
    Moshchevitin, NG
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 155 - 156