Sums of Cantor sets yielding an interval

被引:19
|
作者
Cabrelli, CA
Hare, KE
Molter, UM
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Cantor set; sums of sets;
D O I
10.1017/S1446788700009058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveira showing that when s is irrational C-a + C-a(s) is an interval if and only if a/(1 -2a) a(s)/(1-2a(s)) greater than or equal to 1.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 50 条
  • [41] STRUCTURE FACTOR OF CANTOR SETS
    DETTMANN, CP
    FRANKEL, NE
    TAUCHER, T
    PHYSICAL REVIEW E, 1994, 49 (04): : 3171 - 3178
  • [42] On the capacity of sets of cantor type
    Kellogg, OD
    AMERICAN JOURNAL OF MATHEMATICS, 1931, 53 : 475 - 482
  • [43] ON CANTOR SETS AND PACKING MEASURES
    Wei, Chun
    Wen, Sheng-You
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1737 - 1751
  • [44] Thickness measures for Cantor sets
    Astels, S
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 : 108 - 111
  • [45] On quasisymmetric minimality of Cantor sets
    Wang, Wen
    Wen, Shengyou
    TOPOLOGY AND ITS APPLICATIONS, 2014, 178 : 300 - 314
  • [46] On arithmetic properties of Cantor sets
    Lu Cui
    Minghui Ma
    ScienceChina(Mathematics), 2022, 65 (10) : 2035 - 2060
  • [47] Squeezing functions and Cantor sets
    Arosio, Leandro
    Fornaess, John Erik
    Shcherbina, Nikolay
    Wold, Erlend F.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 1359 - 1369
  • [48] Kakeya sets in cantor directions
    Bateman, Michael
    Katz, Nets Hawk
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (01) : 73 - 81
  • [49] GENERALIZED CAPACITY OF CANTOR SETS
    BEARDON, AF
    QUARTERLY JOURNAL OF MATHEMATICS, 1968, 19 (75): : 301 - &
  • [50] Dimension functions of cantor sets
    Garcia, Ignacio
    Molter, Ursula
    Scotto, Roberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3151 - 3161