Sums of Cantor sets yielding an interval

被引:19
|
作者
Cabrelli, CA
Hare, KE
Molter, UM
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Cantor set; sums of sets;
D O I
10.1017/S1446788700009058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveira showing that when s is irrational C-a + C-a(s) is an interval if and only if a/(1 -2a) a(s)/(1-2a(s)) greater than or equal to 1.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 50 条
  • [31] Parabolic Cantor sets
    Urbanski, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 241 - 277
  • [32] A Characteristic of Cantor Sets
    麦结华
    柳州师专学报, 2013, 28 (01) : 108 - 110
  • [33] Hairy Cantor sets
    Cheraghi, Davoud
    Pedramfar, Mohammad
    ADVANCES IN MATHEMATICS, 2022, 398
  • [34] Nested Cantor sets
    Pierre Berger
    Carlos Gustavo Moreira
    Mathematische Zeitschrift, 2016, 283 : 419 - 435
  • [35] SCRAMBLED CANTOR SETS
    Geschke, Stefan
    Grebik, Jan
    Miller, Benjamin D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4461 - 4468
  • [36] Nested Cantor sets
    Berger, Pierre
    Moreira, Carlos Gustavo
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 419 - 435
  • [37] EMBEDDING CANTOR SETS IN A MANIFOLD .I. TAME CANTOR SETS IN EN
    OSBORNE, RP
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (01) : 57 - &
  • [38] All projections of a typical Cantor set are Cantor sets
    Frolkina, Olga
    TOPOLOGY AND ITS APPLICATIONS, 2020, 281
  • [39] Affine embeddings of Cantor sets and dimension of αβ-sets
    Feng, De-Jun
    Xiong, Ying
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (02) : 805 - 826
  • [40] Affine embeddings of Cantor sets and dimension of αβ-sets
    De-Jun Feng
    Ying Xiong
    Israel Journal of Mathematics, 2018, 226 : 805 - 826