Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters

被引:18
|
作者
Ho, Matthew [1 ,2 ]
Farahi, Arya [3 ]
Rau, Markus Michael [1 ,2 ]
Trac, Hy [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, NSF Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 908卷 / 02期
基金
美国国家科学基金会;
关键词
Cosmology; Galaxy dynamics; Astrostatistics; Galaxy clusters; RECONSTRUCTION PROJECT;
D O I
10.3847/1538-4357/abd101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how variational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover 68% and 90% confidence intervals to within 1% of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dynamical mass estimates of young massive clusters in NGC1140 and M83
    Sarah L. Moll
    Richard de Grijs
    Sabine Mengel
    Linda J. Smith
    Paul A. Crowther
    Astrophysics and Space Science, 2009, 324 : 177 - 182
  • [42] Data-driven trajectory prediction with weather uncertainties: A Bayesian deep learning approach
    Pang, Yutian
    Zhao, Xinyu
    Yan, Hao
    Liu, Yongming
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 130
  • [43] Benchmarks and explanations for deep learning estimates of X-ray galaxy cluster masses
    Ho, Matthew
    Soltis, John
    Farahi, Arya
    Nagai, Daisuke
    Evrard, August
    Ntampaka, Michelle
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (03) : 3289 - 3302
  • [44] Core Mass Estimates in Strong Lensing Galaxy Clusters Using a Single-halo Lens Model
    Gonzalez, J. D. Remolina
    Sharon, K.
    Li, N.
    Mahler, G.
    Bleem, L. E.
    Gladders, M.
    Niemiec, A.
    ASTROPHYSICAL JOURNAL, 2021, 910 (02):
  • [45] DeepSZ: identification of Sunyaev-Zel'dovich galaxy clusters using deep learning
    Lin, Z.
    Huang, N.
    Avestruz, C.
    Wu, W. L. K.
    Trivedi, S.
    Caldeira, J.
    Nord, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (03) : 4149 - 4164
  • [46] Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
    Mayukh Mondal
    Jaume Bertranpetit
    Oscar Lao
    Nature Communications, 10
  • [47] Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
    Mondal, Mayukh
    Bertranpetit, Jaume
    Lao, Oscar
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [48] Comparing dynamical and photometric mass estimates of low- and high-redshift galaxies: Random and systematic uncertainties
    Van Der Wel, A.
    Franx, M.
    Wuyts, S.
    Van Dokkum, P. G.
    Huang, J.
    Rix, H-W.
    Illingworth, G. D.
    ASTROPHYSICAL JOURNAL, 2006, 652 (01): : 97 - 106
  • [49] Dynamical mass estimates for five young massive stellar clusters (vol 128, pg 2295, 2004)
    Larsen, SS
    Brodie, JP
    Hunter, DA
    ASTRONOMICAL JOURNAL, 2006, 131 (04): : 2362 - 2363
  • [50] Deriving reservoir operation rule based on Bayesian deep learning method considering multiple uncertainties
    Liu, Yongqi
    Qin, Hui
    Zhang, Zhendong
    Yao, Liqiang
    Wang, Yongqiang
    Li, Jie
    Liu, Guanjun
    Zhou, Jianzhong
    JOURNAL OF HYDROLOGY, 2019, 579