Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters

被引:18
|
作者
Ho, Matthew [1 ,2 ]
Farahi, Arya [3 ]
Rau, Markus Michael [1 ,2 ]
Trac, Hy [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, NSF Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 908卷 / 02期
基金
美国国家科学基金会;
关键词
Cosmology; Galaxy dynamics; Astrostatistics; Galaxy clusters; RECONSTRUCTION PROJECT;
D O I
10.3847/1538-4357/abd101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how variational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover 68% and 90% confidence intervals to within 1% of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The dynamical mass of the Coma cluster from deep learning
    Ho, Matthew
    Ntampaka, Michelle
    Rau, Markus Michael
    Chen, Minghan
    Lansberry, Alexa
    Ruehle, Faith
    Trac, Hy
    NATURE ASTRONOMY, 2022, 6 (08) : 936 - 941
  • [32] The dynamical mass of the Coma cluster from deep learning
    Matthew Ho
    Michelle Ntampaka
    Markus Michael Rau
    Minghan Chen
    Alexa Lansberry
    Faith Ruehle
    Hy Trac
    Nature Astronomy, 2022, 6 : 936 - 941
  • [33] Exploiting Machine Learning and Disequilibrium in Galaxy Clusters to Obtain a Mass Profile
    Henriksen, Mark J.
    Panda, Prajwal
    ASTROPHYSICAL JOURNAL LETTERS, 2024, 961 (02)
  • [34] Galaxy cluster mass estimation with deep learning and hydrodynamical simulations
    Yan, Z.
    Mead, A. J.
    Van Waerbeke, L.
    Hinshaw, G.
    McCarthy, I. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (03) : 3445 - 3458
  • [35] What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
    Kendall, Alex
    Gal, Yarin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [36] Density dependence of the mass function of globular star clusters in the sombrero galaxy and its dynamical implications
    Chandar, Rupali
    Fall, S. Michael
    McLaughlin, Dean E.
    ASTROPHYSICAL JOURNAL, 2007, 668 (02): : L119 - L122
  • [37] Velocity dispersion and dynamical mass for 270 galaxy clusters in the Planck PSZ1 catalogue
    Ferragamo, A.
    Barrena, R.
    Rubino-Martin, J. A.
    Aguado-Barahona, A.
    Streblyanska, A.
    Tramonte, D.
    Genova-Santos, R. T.
    Hempel, A.
    Lietzen, H.
    ASTRONOMY & ASTROPHYSICS, 2021, 655
  • [38] LEARNING SUMMARY STATISTIC FOR APPROXIMATE BAYESIAN COMPUTATION VIA DEEP NEURAL NETWORK
    Jiang, Bai
    Wu, Tung-Yu
    Zheng, Charles
    Wong, Wing H.
    STATISTICA SINICA, 2017, 27 (04) : 1595 - 1618
  • [39] Galaxy and Mass Assembly (GAMA): Stellar-to-dynamical Mass Relation. I. Constraining the Precision of Stellar Mass Estimates
    Dogruel, M. Burak
    Taylor, Edward N.
    Cluver, Michelle
    D'Eugenio, Francesco
    de Graaff, Anna
    Colless, Matthew
    Sonnenfeld, Alessandro
    ASTROPHYSICAL JOURNAL, 2023, 953 (01):
  • [40] Dynamical mass estimates of young massive clusters in NGC1140 and M83
    Moll, Sarah L.
    de Grijs, Richard
    Mengel, Sabine
    Smith, Linda J.
    Crowther, Paul A.
    ASTROPHYSICS AND SPACE SCIENCE, 2009, 324 (2-4) : 177 - 182