Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters

被引:18
|
作者
Ho, Matthew [1 ,2 ]
Farahi, Arya [3 ]
Rau, Markus Michael [1 ,2 ]
Trac, Hy [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, NSF Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 908卷 / 02期
基金
美国国家科学基金会;
关键词
Cosmology; Galaxy dynamics; Astrostatistics; Galaxy clusters; RECONSTRUCTION PROJECT;
D O I
10.3847/1538-4357/abd101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how variational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover 68% and 90% confidence intervals to within 1% of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Dynamical mass estimates for five young massive stellar clusters
    Larsen, SS
    Brodie, JP
    Hunter, DA
    ASTRONOMICAL JOURNAL, 2004, 128 (05): : 2295 - 2305
  • [12] A deep learning view of the census of galaxy clusters in IllustrisTNG
    Su, Y.
    Zhang, Y.
    Liang, G.
    ZuHone, J. A.
    Barnes, D. J.
    Jacobs, N. B.
    Ntampaka, M.
    Forman, W. R.
    Nulsen, P. E. J.
    Kraft, R. P.
    Jones, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) : 5620 - 5628
  • [13] Layerwise Approximate Inference for Bayesian Uncertainty Estimates on Deep Neural Networks
    Zhang, Ni
    Chen, Xiaoyi
    Quan, Li
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [14] The scaling relation between richness and mass of galaxy clusters: a Bayesian approach
    Andreon, S.
    Hurn, M. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (04) : 1922 - 1937
  • [15] The scaling relation between richness and mass of galaxy clusters: A Bayesian approach
    Andreon, S.
    Hurn, M.A.
    Monthly Notices of the Royal Astronomical Society, 2010, 404 (04): : 1922 - 1937
  • [16] Bayesian Mass Estimates of the Milky Way: Including Measurement Uncertainties with Hierarchical Bayes
    Eadie, Gwendolyn M.
    Springford, Aaron
    Harris, William E.
    ASTROPHYSICAL JOURNAL, 2017, 835 (02):
  • [17] AGNs in massive galaxy clusters: Role of galaxy merging, infalling groups, cluster mass, and dynamical state
    Koulouridis, E.
    Gkini, A.
    Drigga, E.
    ASTRONOMY & ASTROPHYSICS, 2024, 684
  • [18] Mass Estimation of Galaxy Clusters with Deep Learning II. Cosmic Microwave Background Cluster Lensing
    Gupta, N.
    Reichardt, C. L.
    ASTROPHYSICAL JOURNAL, 2021, 923 (01):
  • [19] Generating galaxy clusters mass density maps from mock multiview images via deep learning
    de Andres, Daniel
    Cui, Weiguang
    Yepes, Gustavo
    De Petris, Marco
    Aversano, Gianmarco
    Ferragamo, Antonio
    De Luca, Federico
    Munoz, A. Jimenez
    OBSERVING THE UNIVERSE AT MM WAVELENGTHS, MM UNIVERSE 2023, 2024, 293
  • [20] The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates
    Henson, Monique A.
    Barnes, David J.
    Kay, Scott T.
    McCarthy, Ian G.
    Schaye, Joop
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (03) : 3361 - 3378