Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters

被引:18
|
作者
Ho, Matthew [1 ,2 ]
Farahi, Arya [3 ]
Rau, Markus Michael [1 ,2 ]
Trac, Hy [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, NSF Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 908卷 / 02期
基金
美国国家科学基金会;
关键词
Cosmology; Galaxy dynamics; Astrostatistics; Galaxy clusters; RECONSTRUCTION PROJECT;
D O I
10.3847/1538-4357/abd101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how variational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover 68% and 90% confidence intervals to within 1% of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Galaxy Cluste Mass Reconstruction Project - III. The impact of dynamical substructure on cluster mass estimates
    Old, L.
    Wojtak, R.
    Pearce, F. R.
    Gray, M. E.
    Mamon, G. A.
    Sifon, C.
    Tempel, E.
    Biviano, A.
    Yee, H. K. C.
    de Carvalho, R.
    Mueller, V.
    Sepp, T.
    Skibba, R. A.
    Croton, D.
    Bamford, S. P.
    Power, C.
    von der Linden, A.
    Saro, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (01) : 853 - 866
  • [22] Dynamical mass estimates for two luminous star clusters in galactic merger remnants
    Bastian, N
    Saglia, RP
    Goudfrooij, P
    Kissler-Patig, M
    Maraston, C
    Schweizer, F
    Zoccali, M
    ASTRONOMY & ASTROPHYSICS, 2006, 448 (03) : 881 - 891
  • [23] Dynamical mass estimates for two luminous young stellar clusters in Messier 83
    Larsen, SS
    Richtler, T
    ASTRONOMY & ASTROPHYSICS, 2004, 427 (02) : 495 - 504
  • [24] Dynamical mass estimates for two luminous young stellar clusters in Messier 83
    Larsen, S.S. (slarsen@eso.org), 1600, EDP Sciences (427):
  • [25] A Bayesian Deep Learning RUL Framework Integrating Epistemic and Aleatoric Uncertainties
    Li, Gaoyang
    Yang, Li
    Lee, Chi-Guhn
    Wang, Xiaohua
    Rong, Mingzhe
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) : 8829 - 8841
  • [26] Mass Estimation of Galaxy Clusters with Deep Learning. I. Sunyaev-Zel'dovich Effect
    Gupta, N.
    Reichardt, C. L.
    ASTROPHYSICAL JOURNAL, 2020, 900 (02):
  • [27] Tracing the Galactic Halo: Obtaining Bayesian mass estimates of the Galaxy in the presence of incomplete data
    Eadie, Gwendolyn
    Harris, William
    Widrow, Lawrence
    Springford, Aaron
    GENERAL ASSEMBLY OF GALAXY HALOS: STRUCTURE, ORIGIN AND EVOLUTION, 2016, 11 (S317): : 296 - 297
  • [28] The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters
    Lee, B. E.
    Le Brun, A. M. C.
    Haq, M. E.
    Deering, N. J.
    King, L. J.
    Applegate, D.
    McCarthy, I. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (01) : 890 - 899
  • [29] Bayesian Deep Learning via Expectation Maximization and Turbo Deep Approximate Message Passing
    Xu, Wei
    Liu, An
    Zhang, Yiting
    Lau, Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3865 - 3878
  • [30] Challenges and Opportunities in Approximate Bayesian Deep Learning for Intelligent IoT Systems
    Vadera, Meet P.
    Marlin, Benjamin M.
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 252 - 261