Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters

被引:18
|
作者
Ho, Matthew [1 ,2 ]
Farahi, Arya [3 ]
Rau, Markus Michael [1 ,2 ]
Trac, Hy [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, NSF Planning Inst Phys Future, Pittsburgh, PA 15213 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 908卷 / 02期
基金
美国国家科学基金会;
关键词
Cosmology; Galaxy dynamics; Astrostatistics; Galaxy clusters; RECONSTRUCTION PROJECT;
D O I
10.3847/1538-4357/abd101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how variational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover 68% and 90% confidence intervals to within 1% of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Robust and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy Clusters
    Ho, Matthew
    Rau, Markus Michael
    Ntampaka, Michelle
    Farahi, Arya
    Trac, Hy
    Poczos, Barnabas
    ASTROPHYSICAL JOURNAL, 2019, 887 (01):
  • [2] Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters
    Kohlinger, F.
    Hoekstra, H.
    Eriksen, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (03) : 3107 - 3119
  • [3] A MACHINE LEARNING APPROACH FOR DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS
    Ntampaka, M.
    Trac, H.
    Sutherland, D. J.
    Battaglia, N.
    Poczos, B.
    Schneider, J.
    ASTROPHYSICAL JOURNAL, 2015, 803 (02):
  • [4] Optical mass estimates of galaxy clusters
    Girardi, M
    Giuricin, G
    Mardirossian, F
    Mezzetti, M
    Boschin, W
    ASTROPHYSICAL JOURNAL, 1998, 505 (01): : 74 - 95
  • [5] DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING
    Ntampaka, M.
    Trac, H.
    Sutherland, D. J.
    Fromenteau, S.
    Poczos, B.
    Schneider, J.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02):
  • [6] Dynamical mass inference of galaxy clusters with neural flows
    Ramanah, Doogesh Kodi
    Wojtak, Radoslaw
    Ansari, Zoe
    Gall, Christa
    Hjorth, Jens
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (02) : 1985 - 1997
  • [7] Effect of asphericity in caustic mass estimates of galaxy clusters
    Svensmark, Jacob
    Wojtak, Radoslaw
    Hansen, Steen H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 448 (02) : 1644 - 1659
  • [8] Mass distribution and dynamical state of galaxy clusters in the LZLS sample
    Campusano, L. E.
    Cypriano, E. S.
    Sodre, L., Jr.
    Kneib, J. -P.
    Mass Profiles and Shapes of Cosmological Structures, 2006, 20 : 269 - 270
  • [9] The dynamical state and mass-concentration relation of galaxy clusters
    Ludlow, Aaron D.
    Navarro, Julio F.
    Li, Ming
    Angulo, Raul E.
    Boylan-Kolchin, Michael
    Bett, Philip E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (02) : 1322 - 1328
  • [10] Evaluating Approximate Inference in Bayesian Deep Learning
    Wilson, Andrew Gordon
    Lotfi, Sanae
    Vikram, Sharad
    Hoffman, Matthew D.
    Gal, Yarin
    Li, Yingzhen
    Pradier, Melanie F.
    Foong, Andrew
    Farquhar, Sebastian
    Izmailov, Pavel
    NEURIPS 2021 COMPETITIONS AND DEMONSTRATIONS TRACK, VOL 176, 2021, 176 : 113 - 124