Machine Learning Testing: Survey, Landscapes and Horizons

被引:416
|
作者
Zhang, Jie M. [1 ]
Harman, Mark [2 ]
Ma, Lei [3 ]
Liu, Yang [4 ]
机构
[1] UCL, CREST, London WC1E 6BT, England
[2] Facebook, London W1T 1FB, England
[3] Kyushu Univ, Fukuoka 8190395, Japan
[4] Nanyang Technol Univ, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Machine learning; software testing; deep neural network; COMPUTER-AIDED DIAGNOSIS; SYMBOLIC EXECUTION; SAMPLE-SIZE; CLASSIFIER; PERFORMANCE;
D O I
10.1109/TSE.2019.2962027
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper provides a comprehensive survey of techniques for testing machine learning systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [31] Energy landscapes: some new horizons
    Wales, David J.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2010, 20 (01) : 3 - 10
  • [32] African horizons: The landscapes of African fictions
    Howe, N
    RESEARCH IN AFRICAN LITERATURES, 2001, 32 (01) : 142 - 143
  • [33] DIAGNOSTIC PROPERTIES, HORIZONS, SOILS AND LANDSCAPES
    SCHLICHTING, E
    ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE, 1986, 149 (04): : 492 - 499
  • [34] Inspiring the visitor? Landscapes and horizons of hospitality
    Huijbens, Edward H.
    Benediktsson, Karl
    TOURIST STUDIES, 2013, 13 (02) : 189 - 208
  • [35] Machine Learning for Testing Machine-Learning Hardware: A Virtuous Cycle
    Chaudhuri, Arjun
    Talukdar, Jonti
    Chakrabarty, Krishnendu
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [36] Testing and validating machine learning classifiers by metamorphic testing
    Xie, Xiaoyuan
    Ho, Joshua W. K.
    Murphy, Christian
    Kaiser, Gail
    Xu, Baowen
    Chen, Tsong Yueh
    JOURNAL OF SYSTEMS AND SOFTWARE, 2011, 84 (04) : 544 - 558
  • [37] Apply Machine Learning to IC Testing
    Li, Chien-Mo
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [38] Bayesian Hypothesis Testing in Machine Learning
    Corani, Giorgio
    Benavoli, Alessio
    Mangili, Francesca
    Zaffalon, Marco
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2015, 9286 : 199 - 202
  • [39] Testing swampland conjectures with machine learning
    Bizet, Nana Cabo
    Damian, Cesar
    Loaiza-Brito, Oscar
    Mayorga Pena, Damian Kaloni
    Montanez-Barrera, J. A.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):
  • [40] Combinatorial Testing Metrics for Machine Learning
    Lanus, Erin
    Freeman, Laura J.
    Kuhn, D. Richard
    Kacker, Raghu N.
    2021 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS (ICSTW 2021), 2021, : 81 - 84