Machine Learning Testing: Survey, Landscapes and Horizons

被引:416
|
作者
Zhang, Jie M. [1 ]
Harman, Mark [2 ]
Ma, Lei [3 ]
Liu, Yang [4 ]
机构
[1] UCL, CREST, London WC1E 6BT, England
[2] Facebook, London W1T 1FB, England
[3] Kyushu Univ, Fukuoka 8190395, Japan
[4] Nanyang Technol Univ, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Machine learning; software testing; deep neural network; COMPUTER-AIDED DIAGNOSIS; SYMBOLIC EXECUTION; SAMPLE-SIZE; CLASSIFIER; PERFORMANCE;
D O I
10.1109/TSE.2019.2962027
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper provides a comprehensive survey of techniques for testing machine learning systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [41] Machine Learning Applications in IC Testing
    Stratigopoulos, Haralampos-G.
    2018 23RD IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2018,
  • [42] Machine Learning System For Automated Testing
    Spahiu, Cosmin Stoica
    Stanescu, Liana
    Marinescu, Roxana
    Brezovan, Marius
    2022 23RD INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2022, : 142 - 146
  • [43] Testing swampland conjectures with machine learning
    Nana Cabo Bizet
    Cesar Damian
    Oscar Loaiza-Brito
    Damián Kaloni Mayorga Peña
    J. A. Montañez-Barrera
    The European Physical Journal C, 2020, 80
  • [44] Testing machine learning explanation methods
    Andrew A. Anderson
    Neural Computing and Applications, 2023, 35 : 18073 - 18084
  • [45] Machine Learning Powered A/B Testing
    Serdyukov, Pavel
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 1365 - 1365
  • [46] Exploring New Horizons: Automated Machine Learning for Image Classification Networks
    Cheng, Kangda
    Liu, Jinlong
    Wu, Zhilu
    Wang, Junkai
    Zhang, Zhenqian
    Jin, Haiyan
    2024 8TH INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATIONS, ICISPC 2024, 2024, : 52 - 56
  • [47] SPATIAL VIDEO, GEONARRATIVES AND MACHINE LEARNING CONTEXTUALIZATION DISEASE LANDSCAPES
    Curtis, Andrew
    Ajayakumar, Jayakrishnan
    Bempah, Sandra
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 105 (05): : 301 - 301
  • [48] Data Management for Machine Learning: A Survey
    Chai, Chengliang
    Wang, Jiayi
    Luo, Yuyu
    Niu, Zeping
    Li, Guoliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4646 - 4667
  • [49] A Survey of Privacy Attacks in Machine Learning
    Rigaki, Maria
    Garcia, Sebastian
    ACM COMPUTING SURVEYS, 2024, 56 (04)
  • [50] A survey on machine learning in array databases
    Sebastián Villarroya
    Peter Baumann
    Applied Intelligence, 2023, 53 : 9799 - 9822