Machine Learning Testing: Survey, Landscapes and Horizons

被引:416
|
作者
Zhang, Jie M. [1 ]
Harman, Mark [2 ]
Ma, Lei [3 ]
Liu, Yang [4 ]
机构
[1] UCL, CREST, London WC1E 6BT, England
[2] Facebook, London W1T 1FB, England
[3] Kyushu Univ, Fukuoka 8190395, Japan
[4] Nanyang Technol Univ, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Machine learning; software testing; deep neural network; COMPUTER-AIDED DIAGNOSIS; SYMBOLIC EXECUTION; SAMPLE-SIZE; CLASSIFIER; PERFORMANCE;
D O I
10.1109/TSE.2019.2962027
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper provides a comprehensive survey of techniques for testing machine learning systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [21] Fairness in Machine Learning: A Survey
    Caton, Simon
    Haas, Christian
    ACM COMPUTING SURVEYS, 2024, 56 (07) : 1 - 38
  • [22] Creativity and Machine Learning: A Survey
    Franceschelli, Giorgio
    Musolesi, Mirco
    ACM COMPUTING SURVEYS, 2024, 56 (11)
  • [23] Evolutionary Machine Learning: A Survey
    Telikani, Akbar
    Tahmassebi, Amirhessam
    Banzhaf, Wolfgang
    Gandomi, Amir H.
    ACM COMPUTING SURVEYS, 2021, 54 (08)
  • [24] Survey on Quantum Machine Learning
    Wang, Jian
    Zhang, Rui
    Jiang, Nan
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3843 - 3877
  • [25] Quantum Machine Learning: Survey
    Medisetty, Pramoda
    Evuru, Poorna Chand
    Vulavalapudi, Veda Manohara Sunanda
    Pallapothu, Leela Krishna Kumar
    Annapurna, Bala
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 971 - 981
  • [26] A survey of multimodal machine learning
    Chen P.
    Li Q.
    Zhang D.-Z.
    Yang Y.-H.
    Cai Z.
    Lu Z.-Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (05): : 557 - 569
  • [27] Machine learning to navigate fitness landscapes for protein engineering
    Freschlin, Chase R.
    Fahlberg, Sarah A.
    Romero, Philip A.
    CURRENT OPINION IN BIOTECHNOLOGY, 2022, 75
  • [28] Energy landscapes for a machine learning application to series data
    Ballard, Andrew J.
    Stevenson, Jacob D.
    Das, Ritankar
    Wales, David J.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (12):
  • [29] Exploring the truth and beauty of theory landscapes with machine learning
    Matchev, Konstantin T.
    Matcheva, Katia
    Ramond, Pierre
    Verner, Sarunas
    PHYSICS LETTERS B, 2024, 856