Testing swampland conjectures with machine learning

被引:13
|
作者
Bizet, Nana Cabo [1 ]
Damian, Cesar [2 ]
Loaiza-Brito, Oscar [2 ]
Mayorga Pena, Damian Kaloni [3 ,4 ]
Montanez-Barrera, J. A. [2 ]
机构
[1] Univ Guanajuato, Dept Fis, Loma Bosque 103 Col Lomas Campestre, Guanajuato 37150, Mexico
[2] Univ Guanajuato, Dept Ingn Mecan, Carretera Salamanca Valle Santiago Km 3-5 1-8 Com, Salamanca, Spain
[3] Univ Witwatersrand, Sch Phys, Mandelstam Inst Theoret Phys, NITheP, ZA-2050 Johannesburg, Johannesburg, South Africa
[4] Univ Witwatersrand, CoE MaSS, ZA-2050 Johannesburg, Johannesburg, South Africa
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 08期
关键词
FLUX-SCALING SCENARIO;
D O I
10.1140/epjc/s10052-020-8332-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider Type IIB compactifications on an isotropic torus T-6 threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the refined de Sitter conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much smaller than the corresponding AdS vacuum scale. Finally we apply some results on random matrix theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Testing swampland conjectures with machine learning
    Nana Cabo Bizet
    Cesar Damian
    Oscar Loaiza-Brito
    Damián Kaloni Mayorga Peña
    J. A. Montañez-Barrera
    The European Physical Journal C, 2020, 80
  • [2] Machine learning and cosmographic reconstructions of quintessence and the swampland conjectures
    Arjona, Ruben
    Nesseris, Savvas
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [3] Swampland Conjectures for strings and membranes
    Lanza, Stefano
    Marchesano, Fernando
    Martucci, Luca
    Valenzuela, Irene
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [4] Eternal inflation and swampland conjectures
    Matsui, Hiroki
    Takahashi, Fuminobu
    PHYSICAL REVIEW D, 2019, 99 (02)
  • [5] Modular symmetries and the swampland conjectures
    Gonzalo, E.
    Ibanez, L. E.
    Uranga, A. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [6] Starobinsky inflation and swampland conjectures
    Ketov, S. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (11) : 1819 - 1826
  • [7] Swampland Conjectures for strings and membranes
    Stefano Lanza
    Fernando Marchesano
    Luca Martucci
    Irene Valenzuela
    Journal of High Energy Physics, 2021
  • [8] Modular symmetries and the swampland conjectures
    E. Gonzalo
    L. E. Ibáñez
    A. M. Uranga
    Journal of High Energy Physics, 2019
  • [9] Swampland conjectures and infinite flop chains
    Brodie, Callum R.
    Constantin, Andrei
    Lukas, Andre
    Ruehle, Fabian
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [10] Dynamical Cobordism and Swampland Distance Conjectures
    Ginevra Buratti
    José Calderón-Infante
    Matilda Delgado
    Angel M. Uranga
    Journal of High Energy Physics, 2021