共 50 条
Testing swampland conjectures with machine learning
被引:13
|作者:
Bizet, Nana Cabo
[1
]
Damian, Cesar
[2
]
Loaiza-Brito, Oscar
[2
]
Mayorga Pena, Damian Kaloni
[3
,4
]
Montanez-Barrera, J. A.
[2
]
机构:
[1] Univ Guanajuato, Dept Fis, Loma Bosque 103 Col Lomas Campestre, Guanajuato 37150, Mexico
[2] Univ Guanajuato, Dept Ingn Mecan, Carretera Salamanca Valle Santiago Km 3-5 1-8 Com, Salamanca, Spain
[3] Univ Witwatersrand, Sch Phys, Mandelstam Inst Theoret Phys, NITheP, ZA-2050 Johannesburg, Johannesburg, South Africa
[4] Univ Witwatersrand, CoE MaSS, ZA-2050 Johannesburg, Johannesburg, South Africa
来源:
EUROPEAN PHYSICAL JOURNAL C
|
2020年
/
80卷
/
08期
关键词:
FLUX-SCALING SCENARIO;
D O I:
10.1140/epjc/s10052-020-8332-9
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
We consider Type IIB compactifications on an isotropic torus T-6 threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the refined de Sitter conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much smaller than the corresponding AdS vacuum scale. Finally we apply some results on random matrix theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.
引用
收藏
页数:18
相关论文