Approximation capability of a bilinear immersed finite element space

被引:119
|
作者
He, Xiaoming [1 ]
Lin, Tao [1 ]
Lin, Yanping [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
error estimates; finite element; immersed interface; interface problems;
D O I
10.1002/num.20318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic boundary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite element space and its partition can be independent of the interface. The error estimates for the interpolation of a Sobolev function indicate that this IFE space has the usual approximation capability expected from bilinear polynomials. Numerical examples of the related finite element method are provided. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1265 / 1300
页数:36
相关论文
共 50 条
  • [21] Error analysis of symmetric linear bilinear partially penalized immersed finite element methods for Helmholtz interface problems
    Guo, Ruchi
    Lin, Tao
    Lin, Yanping
    Zhuang, Qiao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 390
  • [22] Numerical approximation based on immersed finite element method for elliptic interface optimal control problem
    Su, Mengya
    Zhang, Zhiyue
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [23] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    de Prenter, F.
    Verhoosel, C. V.
    van Brummelen, E. H.
    Evans, J. A.
    Messe, C.
    Benzaken, J.
    Maute, K.
    COMPUTATIONAL MECHANICS, 2020, 65 (03) : 807 - 838
  • [24] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    F. de Prenter
    C. V. Verhoosel
    E. H. van Brummelen
    J. A. Evans
    C. Messe
    J. Benzaken
    K. Maute
    Computational Mechanics, 2020, 65 : 807 - 838
  • [25] Linear and bilinear immersed finite elements for planar elasticity interface problems
    Lin, Tao
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4681 - 4699
  • [26] On computational issues of immersed finite element methods
    Wang, X. Sheldon
    Zhang, L. T.
    Liu, Wing Kam
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) : 2535 - 2551
  • [27] On the stability of the finite element immersed boundary method
    Heltai, Luca
    COMPUTERS & STRUCTURES, 2008, 86 (7-8) : 598 - 617
  • [28] A finite element approach to the immersed boundary method
    Boffi, D.
    Gastaldi, L.
    Heltai, L.
    PROGRESS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2004, : 271 - 298
  • [29] Mathematical foundations of the immersed finite element method
    Liu, Wing Kam
    Kim, Do Wan
    Tang, Shaoqiang
    COMPUTATIONAL MECHANICS, 2007, 39 (03) : 211 - 222
  • [30] A nodal immersed finite element-finite difference method
    Wells, David R.
    Vadala-Roth, Ben
    Lee, Jae H.
    Griffith, Boyce E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477