Approximation capability of a bilinear immersed finite element space

被引:119
|
作者
He, Xiaoming [1 ]
Lin, Tao [1 ]
Lin, Yanping [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
error estimates; finite element; immersed interface; interface problems;
D O I
10.1002/num.20318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic boundary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite element space and its partition can be independent of the interface. The error estimates for the interpolation of a Sobolev function indicate that this IFE space has the usual approximation capability expected from bilinear polynomials. Numerical examples of the related finite element method are provided. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1265 / 1300
页数:36
相关论文
共 50 条
  • [41] Space-time finite element approximation of parabolic optimal control problems
    Gong, W.
    Hinze, M.
    Zhou, Z. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (02) : 111 - 145
  • [42] Finite Element Approximation of Optimal Control Problem Governed by Space Fractional Equation
    Zhou, Zhaojie
    Tan, Zhiyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (03) : 1840 - 1861
  • [43] On the immersed boundary method: Finite element versus finite volume approach
    Frisani, Angelo
    Hassan, Yassin A.
    COMPUTERS & FLUIDS, 2015, 121 : 51 - 67
  • [44] ON THE IMMERSED BOUNDARY METHOD: FINITE ELEMENT VERSUS FINITE VOLUME APPROACH
    Frisani, Angelo
    Hassan, Yassin A.
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 5, 2012, : 535 - 547
  • [45] Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes
    Lin, Qun
    Lin, Jia-Fu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 960 - 967
  • [46] Superconvergence of immersed finite element methods for interface problems
    Waixiang Cao
    Xu Zhang
    Zhimin Zhang
    Advances in Computational Mathematics, 2017, 43 : 795 - 821
  • [47] Interpolation functions in the immersed boundary and finite element methods
    Wang, Xingshi
    Zhang, Lucy T.
    COMPUTATIONAL MECHANICS, 2010, 45 (04) : 321 - 334
  • [48] Immersed finite element methods for convection diffusion equations
    Jo, Gwanghyun
    Kwak, Do Y.
    AIMS MATHEMATICS, 2023, 8 (04): : 8034 - 8059
  • [49] Stent modeling using immersed finite element method
    Gay, Mickael
    Zhang, Lucy
    Liu, Wing Kam
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4358 - 4370
  • [50] Interpolation functions in the immersed boundary and finite element methods
    Xingshi Wang
    Lucy T. Zhang
    Computational Mechanics, 2010, 45 : 321 - 334