Approximation capability of a bilinear immersed finite element space

被引:119
|
作者
He, Xiaoming [1 ]
Lin, Tao [1 ]
Lin, Yanping [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
error estimates; finite element; immersed interface; interface problems;
D O I
10.1002/num.20318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic boundary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite element space and its partition can be independent of the interface. The error estimates for the interpolation of a Sobolev function indicate that this IFE space has the usual approximation capability expected from bilinear polynomials. Numerical examples of the related finite element method are provided. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1265 / 1300
页数:36
相关论文
共 50 条
  • [31] The Development and Advances of the Immersed Finite Element Method
    Zhang, Lucy T.
    Wang, Chu
    Wang, Xingshi
    BIOLOGICAL FLUID DYNAMICS: MODELING, COMPUTATIONS, AND APPLICATIONS, 2014, 628 : 37 - 57
  • [32] Mathematical foundations of the immersed finite element method
    Wing Kam Liu
    Do Wan Kim
    Shaoqiang Tang
    Computational Mechanics, 2007, 39 : 211 - 222
  • [33] Immersed molecular electrokinetic finite element method
    Adrian M. Kopacz
    Wing K. Liu
    Computational Mechanics, 2013, 52 : 193 - 199
  • [34] Hybrid finite difference/finite element immersed boundary method
    Griffith, Boyce E.
    Luo, Xiaoyu
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (12)
  • [35] Immersed finite element method for eigenvalue problem
    Lee, Seungwoo
    Kwak, Do Y.
    Sim, Imbo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 410 - 426
  • [36] Variational implementation of immersed finite element methods
    Heltai, Luca
    Costanzo, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 229 : 110 - 127
  • [37] Immersed molecular electrokinetic finite element method
    Kopacz, Adrian M.
    Liu, Wing K.
    COMPUTATIONAL MECHANICS, 2013, 52 (01) : 193 - 199
  • [38] A finite element approach for the immersed boundary method
    Boffi, D
    Gastaldi, L
    COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 491 - 501
  • [39] APPROXIMATION IN FINITE ELEMENT METHOD
    STRANG, G
    NUMERISCHE MATHEMATIK, 1972, 19 (01) : 81 - &
  • [40] Finite Element Approximation of Optimal Control Problem Governed by Space Fractional Equation
    Zhaojie Zhou
    Zhiyu Tan
    Journal of Scientific Computing, 2019, 78 : 1840 - 1861