Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces

被引:0
|
作者
Hudzik, H
Kaminska, A
Mastylo, M
机构
[1] ADAM MICKIEWICZ UNIV POZNAN,FAC MATH & COMP SCI,POZNAN,POLAND
[2] MEMPHIS STATE UNIV,DEPT MATH SCI,MEMPHIS,TN 38152
来源
HOUSTON JOURNAL OF MATHEMATICS | 1996年 / 22卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometry of Calderon-Lozanovskii spaces E(phi) in the case of a sigma-finite measure and a Banach function space with the Fatou property is studied. It is proved that if the space of order continuous elements E(alpha) not equal {0} and phi is not an element of Delta(2)(E), then E(phi) contains an order isometric copy of l(infinity). If E(alpha) not equal E then it is proved that E(phi) contains an order almost isometric copy of l infinity for every Orlicz function phi. Under the assumption that E is uniformly monotone it is proved that epsilon(0)(E(phi)) less than or equal to epsilon(0)(L(phi)), where epsilon(0)(E(phi)) and epsilon(0)(L(phi)) stand respectively for the characteristic of convexity of E(phi) and L(phi) (the Orlicz space). As a consequence of this inequality, the characteristic of convexity of Orlicz-Lorentz space Lambda(phi,omega) is computed in the case when the Orlicz function phi is strictly convex. This generalizes the criterion for uniform rotundity of Lambda(phi,omega) given in [Ka3]. Criteria for strict monotonicity, local uniform monotonicity and uniform monotonicity of Orlicz-Lorentz spaces Lambda(phi,omega) are also given. Finally, uniform non-squareness, B-convexity and superreflexivity of Lambda(phi,omega) are studied.
引用
收藏
页码:639 / 663
页数:25
相关论文
共 50 条
  • [31] Property β of Rolewicz and orthogonal convexities of Calderon-Lozanovskii spaces
    Kolwicz, Pawel
    Lesnik, Karol
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (13) : 4352 - 4368
  • [32] Points of Upper Local Uniform Monotonicity in Calderon-Lozanovskii Spaces
    Kolwicz, Pawel
    Pluciennik, Ryszard
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (01) : 111 - 130
  • [33] M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (01): : 213 - 232
  • [34] Daugavet and diameter two properties in Orlicz-Lorentz spaces
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [35] Localization and extrapolation in Orlicz-Lorentz spaces
    Cruz-Uribe, D
    Krbec, M
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 273 - 283
  • [36] The Banach-Saks Properties in Orlicz-Lorentz Spaces
    Kaminska, Anna
    Lee, Han Ju
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [37] Trigonometric series in the Orlicz-Lorentz spaces
    V. B. Simonov
    Russian Mathematics, 2007, 51 (6) : 61 - 74
  • [38] Orlicz-Lorentz Hardy martingale spaces
    Hao, Zhiwei
    Li, Libo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [39] On uniform rotundity in every direction in calderon-lozanovskii sequence spaces
    Kolwicz, Pawel
    Pluciennik, Ryszard
    JOURNAL OF CONVEX ANALYSIS, 2007, 14 (03) : 621 - 645
  • [40] Orlicz-Lorentz spaces and their multiplication operators
    Erlin Castillo, Rene
    Camilo Chaparro, Hector
    Ramos Fernandez, Julio Cesar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 991 - 1009