Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces

被引:0
|
作者
Hudzik, H
Kaminska, A
Mastylo, M
机构
[1] ADAM MICKIEWICZ UNIV POZNAN,FAC MATH & COMP SCI,POZNAN,POLAND
[2] MEMPHIS STATE UNIV,DEPT MATH SCI,MEMPHIS,TN 38152
来源
HOUSTON JOURNAL OF MATHEMATICS | 1996年 / 22卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometry of Calderon-Lozanovskii spaces E(phi) in the case of a sigma-finite measure and a Banach function space with the Fatou property is studied. It is proved that if the space of order continuous elements E(alpha) not equal {0} and phi is not an element of Delta(2)(E), then E(phi) contains an order isometric copy of l(infinity). If E(alpha) not equal E then it is proved that E(phi) contains an order almost isometric copy of l infinity for every Orlicz function phi. Under the assumption that E is uniformly monotone it is proved that epsilon(0)(E(phi)) less than or equal to epsilon(0)(L(phi)), where epsilon(0)(E(phi)) and epsilon(0)(L(phi)) stand respectively for the characteristic of convexity of E(phi) and L(phi) (the Orlicz space). As a consequence of this inequality, the characteristic of convexity of Orlicz-Lorentz space Lambda(phi,omega) is computed in the case when the Orlicz function phi is strictly convex. This generalizes the criterion for uniform rotundity of Lambda(phi,omega) given in [Ka3]. Criteria for strict monotonicity, local uniform monotonicity and uniform monotonicity of Orlicz-Lorentz spaces Lambda(phi,omega) are also given. Finally, uniform non-squareness, B-convexity and superreflexivity of Lambda(phi,omega) are studied.
引用
收藏
页码:639 / 663
页数:25
相关论文
共 50 条
  • [2] On geometric properties of Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (03): : 316 - 329
  • [3] Rotundity properties in Calderon-Lozanovskii spaces
    Kolwicz, P
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (03): : 883 - 912
  • [4] On some geometric properties of generalized Orlicz-Lorentz function spaces
    Foralewski, Pawel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) : 6217 - 6236
  • [5] On some geometric properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (02): : 346 - 372
  • [6] ON THE GEOMETRY OF SOME CALDERON-LOZANOVSKII INTERPOLATION SPACES
    CERDA, J
    HUDZIK, H
    MASTYLO, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (01): : 35 - 49
  • [7] Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces
    Cerda, J
    Hudzik, H
    Kaminska, A
    Mastylo, M
    POSITIVITY, 1998, 2 (04) : 311 - 337
  • [8] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198
  • [9] On some geometrical and topological properties of generalized Calderon-Lozanovskii sequence spaces
    Foralewski, P
    Hudzik, H
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 531 - 542
  • [10] PRODUCTS OF NONCOMMUTATIVE CALDERON-LOZANOVSKII SPACES
    Han, Yazhou
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1341 - 1366