Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces

被引:0
|
作者
Hudzik, H
Kaminska, A
Mastylo, M
机构
[1] ADAM MICKIEWICZ UNIV POZNAN,FAC MATH & COMP SCI,POZNAN,POLAND
[2] MEMPHIS STATE UNIV,DEPT MATH SCI,MEMPHIS,TN 38152
来源
HOUSTON JOURNAL OF MATHEMATICS | 1996年 / 22卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometry of Calderon-Lozanovskii spaces E(phi) in the case of a sigma-finite measure and a Banach function space with the Fatou property is studied. It is proved that if the space of order continuous elements E(alpha) not equal {0} and phi is not an element of Delta(2)(E), then E(phi) contains an order isometric copy of l(infinity). If E(alpha) not equal E then it is proved that E(phi) contains an order almost isometric copy of l infinity for every Orlicz function phi. Under the assumption that E is uniformly monotone it is proved that epsilon(0)(E(phi)) less than or equal to epsilon(0)(L(phi)), where epsilon(0)(E(phi)) and epsilon(0)(L(phi)) stand respectively for the characteristic of convexity of E(phi) and L(phi) (the Orlicz space). As a consequence of this inequality, the characteristic of convexity of Orlicz-Lorentz space Lambda(phi,omega) is computed in the case when the Orlicz function phi is strictly convex. This generalizes the criterion for uniform rotundity of Lambda(phi,omega) given in [Ka3]. Criteria for strict monotonicity, local uniform monotonicity and uniform monotonicity of Orlicz-Lorentz spaces Lambda(phi,omega) are also given. Finally, uniform non-squareness, B-convexity and superreflexivity of Lambda(phi,omega) are studied.
引用
收藏
页码:639 / 663
页数:25
相关论文
共 50 条
  • [41] Trigonometric Series in the Orlicz-Lorentz Spaces
    Simonov, V. B.
    RUSSIAN MATHEMATICS, 2007, 51 (06) : 61 - 74
  • [42] On Disjointly Homogeneous Orlicz-Lorentz Spaces
    Astashkin, S., V
    Strakhov, S., I
    MATHEMATICAL NOTES, 2020, 108 (5-6) : 631 - 642
  • [43] THE RIESZ CONVERGENCE PROPERTY ON WEIGHTED LORENTZ SPACES AND ORLICZ-LORENTZ SPACES
    Li, Hongliang
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 181 - 196
  • [44] Copies of l∞ in Quasi-normed Calderon-Lozanovskii Spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kolwicz, Pawel
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [45] Characterization of subdiagonal algebras on noncom mutative Calderon-Lozanovskii spaces
    Shao, Jingjing
    Han, Yazhou
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1825 - 1831
  • [46] SOME GEOMETRIC-PROPERTIES OF LORENTZ-ORLICZ SPACES
    LIN, PK
    SUN, HY
    ARCHIV DER MATHEMATIK, 1995, 64 (06) : 500 - 511
  • [47] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [48] Orlicz-Lorentz function spaces equipped with the Orlicz norm
    Foralewski, Pawel
    Konczak, Joanna
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [49] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [50] LOCAL Δ2E CONDITION IN GENERALIZED CALDERON-LOZANOVSKII SPACES
    Kolwicz, Pawel
    Panfil, Agata
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 259 - 282