M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES

被引:0
|
作者
Kaminska, Anna [1 ]
Lee, Han Ju [2 ]
Tag, Hyung-Joon [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 01期
基金
新加坡国家研究基金会;
关键词
M-ideals; Orlicz-Lorentz spaces; dual norm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide explicit formulas for the norm of bounded linear functionals on Orlicz-Lorentz function spaces Lambda(phi,omega) equipped with two standard Luxemburg and Orlicz norms. Any bounded linear functional is a sum of regular and singular functionals, and we show that the norm of a singular functional is the same regardless of the norm in the space, while the formulas of the norm of general functionals are different for the Luxemburg and Orlicz norm. The relationship between equivalent definitions of the modular P-phi,P-omega generating the dual space to Orlicz-Lorentz space is discussed in order to compute the norm of a bounded linear functional on Lambda(phi,omega ) equipped with Orlicz norm. As a consequence, we show that the order-continuous subspace of Orlicz-Lorentz space equipped with the Luxemburg norm is an M-ideal in Lambda(phi,omega )while this is not true for the space with the Orlicz norm when phi is an Orlicz N-function not satisfying the appropriate Delta(2) condition. The analogous results on Orlicz-Lorentz sequence spaces are also given.
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
  • [1] On geometric properties of Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (03): : 316 - 329
  • [2] Dual spaces to Orlicz-Lorentz spaces
    Kaminska, Anna
    Lesnik, Karol
    Raynaud, Yves
    STUDIA MATHEMATICA, 2014, 222 (03) : 229 - 261
  • [3] COMPARISON OF ORLICZ-LORENTZ SPACES
    MONTGOMERYSMITH, SJ
    STUDIA MATHEMATICA, 1992, 103 (02) : 161 - 189
  • [4] M-constants in Orlicz-Lorentz function spaces
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (12) : 2556 - 2573
  • [5] Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces
    Cerda, J
    Hudzik, H
    Kaminska, A
    Mastylo, M
    POSITIVITY, 1998, 2 (04) : 311 - 337
  • [6] Daugavet and diameter two properties in Orlicz-Lorentz spaces
    Kaminska, Anna
    Lee, Han Ju
    Tag, Hyung-Joon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [7] The Banach-Saks Properties in Orlicz-Lorentz Spaces
    Kaminska, Anna
    Lee, Han Ju
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] SOME REMARKS ON ORLICZ-LORENTZ SPACES
    KAMINSKA, A
    MATHEMATISCHE NACHRICHTEN, 1990, 147 : 29 - 38
  • [9] Localization and extrapolation in Orlicz-Lorentz spaces
    Cruz-Uribe, D
    Krbec, M
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 273 - 283
  • [10] Trigonometric series in the Orlicz-Lorentz spaces
    V. B. Simonov
    Russian Mathematics, 2007, 51 (6) : 61 - 74