M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES

被引:0
|
作者
Kaminska, Anna [1 ]
Lee, Han Ju [2 ]
Tag, Hyung-Joon [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 01期
基金
新加坡国家研究基金会;
关键词
M-ideals; Orlicz-Lorentz spaces; dual norm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide explicit formulas for the norm of bounded linear functionals on Orlicz-Lorentz function spaces Lambda(phi,omega) equipped with two standard Luxemburg and Orlicz norms. Any bounded linear functional is a sum of regular and singular functionals, and we show that the norm of a singular functional is the same regardless of the norm in the space, while the formulas of the norm of general functionals are different for the Luxemburg and Orlicz norm. The relationship between equivalent definitions of the modular P-phi,P-omega generating the dual space to Orlicz-Lorentz space is discussed in order to compute the norm of a bounded linear functional on Lambda(phi,omega ) equipped with Orlicz norm. As a consequence, we show that the order-continuous subspace of Orlicz-Lorentz space equipped with the Luxemburg norm is an M-ideal in Lambda(phi,omega )while this is not true for the space with the Orlicz norm when phi is an Orlicz N-function not satisfying the appropriate Delta(2) condition. The analogous results on Orlicz-Lorentz sequence spaces are also given.
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
  • [31] Points of monotonicity in Orlicz-Lorentz function spaces
    Gong, Wanzhong
    Shi, Zhongrui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (05) : 1300 - 1317
  • [32] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Gong, Wanzhong
    Zhang, Daoxiang
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1577 - 1589
  • [33] EXTREME-POINTS IN ORLICZ-LORENTZ SPACES
    KAMINSKA, A
    ARCHIV DER MATHEMATIK, 1990, 55 (02) : 173 - 180
  • [34] ROTUNDITY AND UNIFORM ROTUNDITY OF ORLICZ-LORENTZ SPACES WITH THE ORLICZ NORM
    Wang, Jincai
    Chen, Yi
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 131 - 151
  • [35] Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Cui, Yunan
    Foralewski, Pawel
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    POSITIVITY, 2021, 25 (04) : 1273 - 1294
  • [36] On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces
    Foralewski, Pawe
    Hudzik, Henryk
    Szyrnaszkiewicz, Lucjan
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) : 181 - 198
  • [37] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Wang, Di
    Cui, Yunan
    POSITIVITY, 2022, 26 (02)
  • [38] Uniform Kadec-Klee properties of Orlicz-Lorentz sequence spaces equipped with the Orlicz norm
    Di Wang
    Yunan Cui
    Positivity, 2022, 26
  • [39] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Charu Sharma
    Syed Abdul Mohiuddine
    Kuldip Raj
    Ali H. Alkhaldi
    Journal of Inequalities and Applications, 2018
  • [40] On the Moduli and Characteristic of Monotonicity in Orlicz-Lorentz Function Spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    Krbec, Miroslav
    Wojtowicz, Marek
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (04) : 955 - 970