M-IDEAL PROPERTIES IN ORLICZ-LORENTZ SPACES

被引:0
|
作者
Kaminska, Anna [1 ]
Lee, Han Ju [2 ]
Tag, Hyung-Joon [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 01期
基金
新加坡国家研究基金会;
关键词
M-ideals; Orlicz-Lorentz spaces; dual norm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide explicit formulas for the norm of bounded linear functionals on Orlicz-Lorentz function spaces Lambda(phi,omega) equipped with two standard Luxemburg and Orlicz norms. Any bounded linear functional is a sum of regular and singular functionals, and we show that the norm of a singular functional is the same regardless of the norm in the space, while the formulas of the norm of general functionals are different for the Luxemburg and Orlicz norm. The relationship between equivalent definitions of the modular P-phi,P-omega generating the dual space to Orlicz-Lorentz space is discussed in order to compute the norm of a bounded linear functional on Lambda(phi,omega ) equipped with Orlicz norm. As a consequence, we show that the order-continuous subspace of Orlicz-Lorentz space equipped with the Luxemburg norm is an M-ideal in Lambda(phi,omega )while this is not true for the space with the Orlicz norm when phi is an Orlicz N-function not satisfying the appropriate Delta(2) condition. The analogous results on Orlicz-Lorentz sequence spaces are also given.
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
  • [41] Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces
    Li, Hongliang
    Chen, Jiecheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (03) : 467 - 484
  • [42] EMBEDDINGS OF ORLICZ-LORENTZ SPACES INTO L1
    Prochno, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 59 - 70
  • [43] k-rotundity of Orlicz-Lorentz sequence spaces
    Wang, Zichen
    Gong, Wanzhong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [44] Atomic decompositions of weak Orlicz-Lorentz martingale spaces
    Zhang, Chuanzhou
    Zhong, Mingming
    Zhang, Xueying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [45] Compact weighted composition operators on Orlicz-Lorentz spaces
    Arora, S. C.
    Datt, Gopal k
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 567 - 578
  • [46] Atomic decompositions of weak Orlicz-Lorentz martingale spaces
    Chuanzhou Zhang
    Mingming Zhong
    Xueying Zhang
    Journal of Inequalities and Applications, 2014
  • [47] Convolutions, Tensor Products and Multipliers of the Orlicz-Lorentz Spaces
    Hongliang LI
    Jiecheng CHEN
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (03) : 467 - 484
  • [48] Compact weighted composition operators on Orlicz-Lorentz spaces
    S. C. Arora
    Gopal Datt
    Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 567 - 578
  • [49] Convolutions, tensor products and multipliers of the Orlicz-Lorentz spaces
    Hongliang Li
    Jiecheng Chen
    Chinese Annals of Mathematics, Series B, 2015, 36 : 467 - 484
  • [50] Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces
    Sharma, Charu
    Mohiuddine, Syed Abdul
    Raj, Kuldip
    Alkhaldi, Ali H.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,