A finite embedding theorem for partial Steiner 3-designs

被引:1
|
作者
Dukes, Peter J. [1 ]
Feng, Tao [2 ]
Ling, Alan C. H. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
Circle geometry; Steiner system; 3-Design; Embedding; TRIPLE-SYSTEMS; DESIGNS; CONSTRUCTION; PROOF;
D O I
10.1016/j.ffa.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Steiner system S(t, k, n) is a k-uniform set system. on [n] for which every t-set is covered exactly once. More generally, a partial Steiner. system P(t, k, n) is a k-uniform set system on [n] where every t-set is covered at most once. Let q be a prime power.. Using circle geometries and field-based block spreading, we give an explicit embedding for any partial Steiner system P(3, q + 1, n) into a Steiner system S(3, q + 1, q(m) + 1) for some m = m(q, n). (C) 2014 Elsevier Inc. All rights reseived.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [31] A construction of resolvable nested 3-designs
    Rai, S
    Banerjee, S
    Kageyama, S
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (06) : 466 - 470
  • [32] A new class of splitting 3-designs
    Miao Liang
    Beiliang Du
    Designs, Codes and Cryptography, 2011, 60 : 283 - 290
  • [33] SOME SIMPLE HOMOGENEOUS 3-DESIGNS
    BETH, T
    JUNGNICKEL, D
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (04) : 443 - 445
  • [34] Construction of 3-designs using parallelism
    Van Trung T.
    Journal of Geometry, 2000, 67 (1-2) : 223 - 235
  • [35] EMBEDDING PARTIAL STEINER TRIPLE-SYSTEMS
    ANDERSEN, LD
    HILTON, AJW
    MENDELSOHN, E
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1980, 41 (NOV) : 557 - 576
  • [36] AN EMBEDDING THEOREM FOR AFFINE RESOLVABLE DESIGNS
    MOON, A
    DISCRETE MATHEMATICS, 1982, 40 (2-3) : 255 - 259
  • [37] FINITE COMPLETION OF FINITE PARTIAL STEINER SYSTEMS
    GANTER, B
    ARCHIV DER MATHEMATIK, 1971, 22 (03) : 328 - &
  • [38] 4-blocked Hadamard 3-designs
    Berardi, L
    Buratti, M
    Innamorati, S
    DISCRETE MATHEMATICS, 1997, 174 (1-3) : 35 - 46
  • [39] 3-designs from PGL(2, q)
    Cameron, PJ
    Omidi, GR
    Tayfeh-Rezaie, B
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [40] A Class of Group Divisible 3-Designs and Their Applications
    Wang, J.
    Ji, L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (02) : 136 - 146