Splitting t-designs were first formulated by Huber in recent investigation of optimal (t − 1)-fold secure splitting authentication codes. In this paper, we investigate the construction and existence of splitting t-designs t-(v, u × k, 1) splitting designs and, show that there exists a 3-(v, 3 × 2, 1) splitting design if and only if v ≡ 2 (mod 8). As its application, we obtain a new infinite class of optimal 2-fold secure splitting authentication codes.