A new class of splitting 3-designs

被引:0
|
作者
Miao Liang
Beiliang Du
机构
[1] Suzhou Vocational University,Foundation Department
[2] Suzhou University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2011年 / 60卷
关键词
Splitting ; -designs; Splitting authentication codes; Candelabra splitting ; -systems; 05B05; 94A62;
D O I
暂无
中图分类号
学科分类号
摘要
Splitting t-designs were first formulated by Huber in recent investigation of optimal (t − 1)-fold secure splitting authentication codes. In this paper, we investigate the construction and existence of splitting t-designs t-(v, u × k, 1) splitting designs and, show that there exists a 3-(v, 3 × 2, 1) splitting design if and only if v ≡ 2 (mod 8). As its application, we obtain a new infinite class of optimal 2-fold secure splitting authentication codes.
引用
收藏
页码:283 / 290
页数:7
相关论文
共 50 条